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Abstract  

In this paper I examine Field’s account of the applicability of mathematics from a measurement-

theoretic perspective. Within this context, I object to Field’s instrumentalism, arguing that it depends 

on an incomplete analysis of applicability. I show in particular that, once the missing piece of analysis 

is provided, the role played by numerical entities in basic empirical theories must be revised: such 

revision implies that instrumentalism should be rejected and mathematical entities be regarded not 

merely as useful tools but also as conceptual schemata by means of which we can articulate our 

understanding of experience. 

 

 

1. Introduction 

In Science without Numbers (1980) Hartry Field argues against that form of realism about 

mathematical entities based on the role they play within scientific theories. In so doing, he 

develops an account of classical mechanics which dispenses with the usual calculus tools 

adopted in physics.  

To my knowledge, the philosophical debate on Field’s book has mostly been restricted 

to the ontological implications of his position and the problems raised by the kind logic 

(second-order) adopted in his treatment of mechanics. There is, nevertheless, another 

important issue connected to it, and that doesn’t seem to have received too much attention, 

namely that of the applicability of mathematics to physical (in general, empirical) facts. 

More precisely, there is a natural way of reading Field’s results as an extremely 

interesting analysis of the applicability of mathematical entities to scientific theories: this is 

because, in order to explain why we can dispense with the calculus in mechanics, Field shows 

how the real numbers, together with functions of one or more real variables and their 

properties (like completeness, continuity or differentiability) can be introduced on a synthetic 

theory of space-time, that only contains primitives (e.g. space-time points and the geometrical 

relations of order and congruence) with a straightforward physical interpretation, which are, 

for this reason, opposed to abstract entities, relations and operations. Within this framework it 

is possible to explain, for example, what’s the intrinsic content of an analytical operation like 

differentiation, by isolating the physical notions that allow its introduction on a coordinatized 

counterpart of space-time. 
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What we are able to tell is, in short, what physical conditions must certain entities, like 

space-time points, satisfy in order for them to be describable numerically: we formulate 

explicitly those physical facts entail the possibility of superimposing on the structure of 

space-time the structure of the vector space R
4
 (whose elements are all the ordered 4-tuples of 

real numbers).   

This act of superimposition generates a distinction between, on the one hand, physical 

entities (e.g. space-time points), that we can treat independently and, on the other, numerical 

entities (e.g. the reals), that are available to us as tools to facilitate deductions about the 

physical entities. Physical entities are of course indispensable for the description of space-

time, while numerical entities are regarded as extrinsic to it: the resulting picture of 

mathematics is therefore instrumentalist, as it restricts its role to that of a useful device for 

drawing more expediently inferences from (numerically interpreted) physical premises.  

In this paper I want to argue against this conclusion: in particular I make a case for the 

idea that theoretical entities (like space-time points) and mathematical ones are similar in one 

important respect, i.e. in that they are schemata employed to embed experience into an ideal 

model. As I’ll show, this doesn’t conflict with the account Field gives of applicability but 

rather supplements it. The position I want to maintain is aimed against Field’s distinction 

between the intrinsic
1
 features of theoretical entities and the extrinsic features of numerical 

entities: instrumentalism is a consequence of extrinsicity or, equivalently, dispensability.  

On the view I’m proposing, on the other hand, it is possible to explain the role of real 

numbers in applications also in terms of their ‘intrinsic’ content (in a sense to be explained). 

Since I take instrumentalism to follow from the extrinsicity of mathematical entities to the 

description of physical settings, I block it by showing that extrinsicity is only tenable on the 

basis of a partial account of applicability which, when extended, proves incompatible with 

instrumentalism. 

The main consequence of my position is that mathematical entities may be understood 

not just as useful tools but also as ideal schemata that deepen our understanding of facts
2
. 

                                                
1 This adjective is taken here and in any subsequent occurrence in its mathematical meaning, which is ‘invariant 

under a class of coordinate changes’. 
2
 I don’t think such a conclusion needs any realist attitude regarding mathematical entities: on the contrary, it 

seems to me that, as long as we talk of ideal schemata, we should abandon even a realist attitude toward 

theoretical entities. This move does not, in my opinion, imply fictionalism, at least a strong version of 

fictionalism, that sees theoretical entities as, again, useful tools for drawing conclusions from experience. Firstly, 

because we need to explain why certain postulated entities are useful and this doesn’t in general reduce to mere 

convenience, and secondly because it appears to me the alternative between realism and strong fictionalism 

(perhaps fictionalism in general) is a false one. It appears more reasonable to think of our theories invoking ideal 
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In sum, this paper is structured as follows: in Section 2, I introduce an account of the 

applicability of real numbers to measurement, that I show to contain all the conceptual 

features of Field’s account, albeit within a more restricted context (in the sense that it doesn’t 

involve a whole scientific theory like classical mechanics). This shows that a measurement-

theoretic perspective is adequate to discuss Field’s views. In Section 3, I focus, within this 

perspective, on the explanation of applicability that emerges from the concept of 

representation, which is crucial for the developments of Field 1980. In section 4, I show that 

such an explanation is not complete and, using ideas presented in Niederée 1992, I 

supplement it, drawing from the extended account thus obtaining my main argument against 

instrumentalism. In section 5, I make some concluding remarks to strengthen my position.     

 

2. The applicability of real numbers: Measurement and Field’s strategy 

Field observes in his book that  

 

Measurement theory has [focused] on such questions as: what must the intrinsic facts about 

temperature differences between physical objects be if it is appropriate to think of 

temperature as being represented by real numbers? And except for the fact that I am 

substituting space-time points for physical objects, this is in effect the question I am now 

asking (Field 1980: 58).  

 

Apart from the specific reference to temperature, the point is that the basic question of 

measurement theory
3
 (which, note, is a question about the applicability of real numbers) is 

exactly the one Field answers in his book. For this reason, and also because the methods 

adopted to provide an answer are the same, measurement theory can be legitimately used, in 

the stead of classical mechanics or space-time, to illustrate Field’s ideas. This is exactly what 

I will do in the following sections: nonetheless, in order to better justify my strategy, I’ll now 

illustrate on which grounds we can consider Field’s methods and measurement-theoretic ones 

equivalent.   

                                                                                                                                                   
entities as approximate descriptions of certain classes of facts, for instance infinite generalizations of them: such 

generalizations contain elements of objectivity, since they grant the extension of our knowledge, while on the 

other hand cannot be considered totally objective, in that they are not exhaustive descriptions of reality.       
3 By ‘measurement theory’ I hereafter intend that mathematical approach to measurement that is also called the 

representational paradigm of measurement and that has been systematically expounded in Krantz et al. 1971 

(two further volumes extending the results in the book exist, but I won’t use nor refer to them in this paper). I’m 

not assuming there exists only one theory of measurement, for many approaches alternative to the 

representational paradigm have been developed.  
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One direction of the equivalence (from Field to measurement theory) is trivial for, if 

we start from Field’s book, we see that, to treat quantities like temperature he simply adopts 

their axiomatizations as found in the works of measurement theorists. 

The opposite direction (from measurement theory to Field) requires some 

observations: what I want to show is that, firstly, the way in which measurement theory treats 

the applicability of numbers can be rephrased in terms of dispensability and, secondly, that it 

is possible to easily extend it to encompass the whole domain of Field’s analysis.  

In order to do it, some preliminary discussion is needed of the way in which physical 

quantities are treated from the point of view of measurement theory.  

One good way of doing it is to start from looking at what is presupposed by our 

everyday measurement practices: for example, when we need to know how heavy an object is, 

we simply put it on a balance and read the pointer, thus immediately identifying the sought 

weight with a number on a scale. Analogously, a chemist that wanted to evaluate the mass of 

a certain amount of a substance, would use to that purpose a system of standard weights – i.e. 

such that a number is attached to each of them – and would just sum the numbers of the 

weights that, on an equal-arm balance, produce a state of equilibrium when put on the pan 

opposite to that containing the substance whose weight is to be measured. This is to show that 

we are used to dealing with quantitative attributes of things numerically in a very 

straightforward way, exactly as when we make calculations in physics. For instance we treat 

in a purely arithmetical fashion the sum of two dimensional quantities, e.g. we consider the 

equality 1g + 2g = 2g + 1g (where g stands for grams) to be trivially true of masses.    

Yet, to see that this may be false, consider the following ideal experimental setting for 

mass measurement, described by Falmagne 1975:  

 

In a vacuum room two vertical cables running from the floor to the ceiling have been fixed 

symmetrically with respect to [a hole] in the ceiling of the room and [an edge] on the floor. 

The edge is exactly below the hole. […] The experimenter has a collection of homogeneous 

iron balls which can be hung to the cables (1975:139). 

 

If two spherical balls are hung to the cables, the following procedure is adopted to establish 

which has the greater mass: a small object is dropped through the hole in the ceiling and one 

observes on which side of the edge on the floor it falls. This is the side of the heavier object, 

because of Newton’s universal law of gravitation: in other words, the greater mass exerts the 

stronger attraction.  
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Within the same setting one could also compare couples of spherical objects (or 

collections of them, provided they fit in the room), simply hanging each couple to a different 

cable and repeating the procedure just described. It is apparent that in this sense we are 

comparing the ‘overall’ mass of the spherical objects involved, that is their ‘sum’, so we have 

an empirical operation of concatenation that we may provisionally think of as additive and 

that I’ll denote simply by ‘+’. Now, suppose we have four objects X, X’, Y and Y’, such that 

the mass of X and X’ are equal and greater than the equal masses of Y and Y’: this is also true 

of X + Y and X’ + Y’, when X, Y and X, Y’ are hung to the cable in the same order (i.e. X and 

X’ come first and closer to the ceiling, Y and Y’ second). Nevertheless, if we hang the two 

couples in reverse order (i.e. X and Y’ come first, Y and X’ second), the overall masses are, by 

the measurement procedure, different. This happens because, when an object O, dropped 

through the hole in the ceiling, starts falling, the gravitational pull toward X prevails on that in 

the direction of Y’ (because Y’ has a smaller mass) so the distance of the falling object from X 

becomes smaller than that from Y’. When O continues falling, it therefore finds itself closer to 

Y than to X: despite the fact that X has the greater mass, it is now farther from O than Y and, 

since gravitational attraction decreases non linearly, X’s pull on O can’t cancel out that of Y 

and bring O exactly on the edge of the floor. In fact O will fall closer to the centre of Y than to 

that of X: this shows that X’ + Y’ = X + Y ≠ Y’ + X’ and the empirical ‘sum’ defined by the 

procedure is not commutative. In this case, an equality like 1g + 2g = 2g + 1g (assuming we 

may be incredibly precise, and detect the gravitational forces produced by very small masses 

on O) is false, so we have a situation in which arithmetical laws and empirical ones fall apart. 

The main consequence of this example is that there exists a factual distinction between 

the behaviour of concrete objects subjected to an experimental procedure and the laws of 

arithmetic: in other words, we cannot apply these laws to any empirical context but only to 

those that fulfil certain conditions. To put it differently, the applicability of numbers is in 

effect an ‘empirical’ matter, in the sense that it depends on the structural features of the 

objects to be measured.  

Looking more closely at the example above, it can be seen that we have there a 

method for saying which of two objects has the greater mass, i.e. a way of comparing them, 

and also a method to compare collections of objects, by a concrete operation of concatenation 

(hanging several balls to one cable). We have, therefore, determined, by means of a 

procedure, what is usually called in measurement theory an empirical structure or system, 

whose domain is the domain of tested spherical balls, and on which an empirical relation of 
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comparison and an empirical operation of concatenation are defined. It has also been shown 

that the relation of concatenation doesn’t behave like arithmetical addition, in the precise 

sense that it violates one formal property of real addition, namely commutativity: in other 

words, it is not possible, intuitively, to interpret the empirical structure on the ordered reals 

with ordinary addition (or a subsystem thereof).  

This in turn highlights the fact that, in order to apply that fragment of real arithmetic to 

an empirical structure, we need certain conditions, concerning the formal properties of the 

latter, to be fulfilled. We can therefore move one step forward to focus on the difference 

between the formal properties of an empirical domain and those of arithmetic and conclude, 

in particular, that the latter only applies to those domains that meet certain factual constraints 

corresponding to its structural features. We apply, in other words, a certain numerical 

structure to an empirical one exactly when the latter can be consistently interpreted on the 

former. 

In the case at hand, we start from a precise type of empirical structure, determined by a 

binary relation of mass-comparison and a binary operation of mass-concatenation (for 

example that of adding objects on one pan of a balance), whose candidate numerical 

interpretations are respectively the ordering of the reals according to magnitude and real 

addition. 

More formally, what we are looking for is a structure-preserving mapping (not necessarily 

one-to-one or onto) from an empirical system into a numerical one, that interprets mass-

comparison, denoted by ‘≤M’, on the numerical relation denoted by ‘ ≤’, and mass-

concatenation, denoted by ‘+M’ on numerical addition, denoted by ‘+’.  

In symbols, given the empirical system, M = <M, ≤M, +M>, where M is a domain of 

physical objects and the numerical system R = <R
+
, ≤, +>, where R

+
 are the positive reals (or 

a subset thereof), we want to have a function f, called a representation, of M into R, such that, 

for any m, m’ in M:  

i) m ≤M m’ if and only if f(m) ≤ f(m’) 

ii)  f(m +M m’) = f(m) + f(m’) . 

The function f is then called a strong homomorphism of M into R
4
. What clauses (i) and (ii) 

say is essentially that all facts concerning mass-comparison and concatenation can be 

described by numerical facts involving the reals: the arithmetic we use just translates 

                                                
4 It would be a homomorphism in the usual algebraic sense if a conditional replaced the biconditional in (i). 
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numerically the intrinsic facts about masses and it is for this reason that numbers are not 

necessary to talk about M, but rather encode information about it, expressible just in terms of 

≤M and +M
5
. It is also clear that from clause (ii) one can deduce the following chain of 

equalities:  f(m +M m’) = f(m) + f(m’) = f(m’) + f(m) = f(m’ +M m), which implies that f must 

assign the same measure to m +M m’ and m’ +M m, something that contradicts mass-

measurement based on the law of gravitation, as described above. In that case no 

representation on the additive reals could exist, while we can still talk about the empirical 

structure without one. Thus in some cases numbers must be dispensed with (at least as long as 

we take the structure of R) while, more importantly, the problem arises of finding necessary 

and sufficient, or at least sufficient, conditions for representability (cf. Field’s quote at the 

beginning of this section).  

These are usually given in the form of an axiom system from which a metatheorem, 

called a representation theorem, can be proved, ensuring the existence of a function satisfying 

(i) and (ii) for all the models of the axioms. The axioms here only describe facts concerning 

physical objects and the theorem shows that, when such facts actually obtain, it is possible to 

treat them arithmetically: the applicability of numbers is thus subordinated to a concept of 

empirical regularity (expressed by the axioms), that becomes the criterion to decide when 

certain numerical systems are adequate to capture the general features of a physical domain. 

The notion of an adequacy criterion contains the idea that numbers may be dispensed with 

exactly because they are just assigned to objects through a representation which generates 

them on the basis of the empirical interactions of the objects to be measured. That is why the 

logical analysis of measurement in terms of representability is essentially linked to the 

nominalistic idea of dispensing with numbers and, as a consequence, the same concept of 

applicability is to be found in both.   

If we now think again of order and addition on the reals, but add multiplication and 

regard them as the basic operations adopted to reflect facts about order and distance (i.e. 

betweenness and congruence) of points, we see how the representational view can be 

extended to include geometry and eventually, when the affined geometry of space-time is 

considered, encompasses the fundamental background of a physical theory like classical 

mechanics too: the further step, a full treatment of classical mechanics, is completely 

                                                
5
 Numbers then are applied in virtue of the conditions on f. For instance, using (ii) we can infer from the known 

values of two masses the value of the mass that will be in equilibrium with their concatenation (simply 

performing addition). 
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analogous to the previous ones. Hence the strong connection between measurement, 

understood in terms of structure-preserving mappings, and Field’s nominalism.  

 

3. Representation and applicability 

In order to see the relevance of Field’s account of applicability, which, as I’ve shown, 

essentially coincides with a representational account of the way numbers are assigned to the 

elements of an empirical system, it is necessary to have a look at what exactly is and what is 

entailed by a representation theorem. To this end and for future reference, I give below an 

axiom system from which there can be proved the existence of a mapping that satisfies (i) and 

(ii) of the previous section. 

The axioms I present characterize what are called, in the literature on measurement, 

extensive systems, i.e. domains of quantities on which a weak ordering
6
 and an associative 

operation of concatenation are defined, and have been introduced in Suppes 1951
7
. Of course, 

they are adequate for mass-measurement as well as the measurement of almost any other 

physical quantity
8
. According to Suppes’ definition, an extensive system is a triple M =  <M, 

≤M, +M>, where ≤M is a binary relation and +M a binary operation satisfying the following 

axioms
9
 (wherein x,y, and z are assumed to be arbitrary elements of M): 

1) Transitivity of ≤M: x ≤M y and y ≤M z imply x ≤M z; 

2) Closure of +M : if x, y are in M then their concatenation x +M y is in M; 

3) Weak associativity of  +M: (x+M y) +M  z ≤M  x+M  (y +M z); 

4) Weak monotonicity of +M  with respect to ≤M : if x ≤M y, then x+M  z ≤M z +M y; 

5) Solvability: if x≤M y and not y ≤M x, there exists a z such that x ≤M z+M y and z+M y 

≤Mx; 

6) Non maximality of +M  with respect to ≤M : not x ≤M x+M  y; 

                                                
6
 That is a binary relation which is transitive and connected (i.e. intuitively any two elements of the domain on 

which it is defined are comparable). 
7 Many modifications of this axiomatization, i.e. probabilistic ones or just several weakened forms of it, are at 

present available. For the purposes of this paper though, and to offer a sufficiently intuitive axiom system, I’ve 

decided to use the classical version of the theory proposed by Suppes (which in turn weakens the one of Hölder 

1901). 
8 By the fact that they’re adequate I mean that the working physicists is generally implicitly assuming them or 

even, sometimes, a stronger version of them. 
9
 I provisionally ask the reader to take this list of axioms without further comments. The justification for having 

presented them will appear in the next section. For the moment they are used just to give a precise formulation of 

what is an axiom system for a theory of measurement.  
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7) Archimedes: if x≤M y, then there is a positive integer n such that not nx ≤M y
10

. 

It can be shown (for a sketch of the argument see next section), that any model of an 

extensive system is homomorphic to a subsystem of R = <R
+
, <, +>. Such a result means 

essentially one thing, i.e. that any model of the axioms can be represented on a subsystem of 

real arithmetic, whence it is gathered that R (or parts of it) suffices to characterize the whole 

class of models of extensive structures. The general consequence of this result for 

applicability is that, whenever an empirical domain satisfies the axioms, there is a fragment of 

arithmetic that can be used to work on it or, equivalently, its elements can be taken to form a 

metric series on the real line, so that this becomes the general structural feature of all 

extensive quantities.  

Another way of looking at a representation theorem consists in reading it as a solvability 

condition, to the effect that any empirical domain exhibiting the degree of regularity specified 

by the axioms gives rise to empirical interactions involving comparisons and concatenations 

of physical objects that always have a numerical solution on the reals. We might think of such 

interactions concretely as the outcomes of an experimental procedure applied to a certain 

physical domain and more abstractly as a class of conditions emerging from the procedure 

(and ultimately reducible to the axioms): thus a procedure generates a sort of empirical set of 

‘constraint equations’ in several unknowns, that, as long as they reflect the features of an 

extensive domain, can always be solved numerically, i.e. replacing the unknowns with 

numbers (under a suitable interpretation of the operations and relations involved). 

One way in which Field’s nominalism is relevant for the description of applicability is its 

stress on representability as solvability, as just outlined: that such a stress is really present in 

Field’s discussion can be seen indirectly, looking at one aspect of solvability whose 

importance he explicitly acknowledges. Strictly speaking, what a representation theorem tells 

us is that, if something is a model of the Suppes’ axioms, then there is at least one function 

that maps it on the additive reals. So we have at least one numerical solution of the axioms 

and this naturally poses the question how many of them there are. If we look at extensive 

systems, we can quite clearly see that there are infinitely many numerical solutions, that can 

                                                
10

 Here the integer multiples of a quantity x are defined recursively by means of concatenation, i.e. by putting 1x 

= x and (n+1)x = nx +M x. The connectedness of the ordering, as well as the commutativity of +M  can be 

derived from the axioms (the particular form of (4) is introduced to facilitate the derivation of commutativity). 

Also, (3) doesn’t assume full associativity (that would be given by (3) plus the opposite inequality, since this is 

the way in which empirical equality =M can be defined from a weak order), but this follows from the axioms 

anyway. Algebraically, an extensive system of the type described can be thought of as an ordered, positive and 

Archimedean semigroup. 
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be identified with those one-to-one transformations of the reals onto themselves which leave 

their ordered additive structure unchanged (i.e. the order-preserving automorphisms of the 

additive reals). In symbols, if f is a representation and g one of the relevant transformations of 

the reals, then gf (the functional composition of f and g) is still a representation, and it can be 

proved that nothing else is a representation of an extensive structure on the ordered, additive 

reals. Such a result is called a uniqueness theorem and gives information about how strongly 

the empirical structure of a given domain constrains its numerical interpretations
11

: it turns 

out that, in the case of extensive systems, the g’s correspond to the class of similarity 

transformations, i.e. multiplications by a positive real constant. Thus one could take the 

values of f and multiply them for one fixed positive real number, to obtain a new 

representation from f: the numerical transformation thus performed corresponds to an 

empirical change in the unit of measure (for Field’s remarks on uniqueness results, see Field 

1980: 50). 

From this point of view, representation and uniqueness theorems correspond just to 

existence and uniqueness constraints induced by an empirical structure on its possible 

numerical representations. It could be shown (see Krantz et al.1971: 99-102) that, even if we 

did not represent extensive structures on the additive reals but chose to interpret them on 

some other isomorphic numerical structure (for instance one where we keep the same order 

relation but replace ordinary addition with ordinary multiplication), we could 

straightforwardly obtain from the additive case representation and uniqueness results for the 

other representing structures. All these alternative cases, in which we obtain the existence of a 

determined class of morphisms connecting a physical system to an infinite class of numerical 

structures, are unified by the axioms for the physical system concerned, which in every 

instance require the identity of structure of the representing systems and their having an 

associated group of transformations which vary with one degree of freedom, corresponding to 

the concrete act of changing the unit of measure.  

Because, finally, the numerical solutions of an axiom system can be generated by a 

structure-preserving function, it is quite clear that they are introduced exactly to keep track of 

the outcomes of concrete operations performed on an empirical system, which are left 

undisturbed under changes of unit. In other words, to each empirical comparison of, say, 

masses there corresponds a numerical inequality and to each concatenation of masses a 

                                                
11 An interesting related question is the converse one, asking how strongly certain uniqueness properties 

constrain the structural features of a domain which is required to entail them.  
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numerical sum: performing sums and studying inequalities becomes a way of extracting a 

numerical algebra from a procedure, which crucially passes through axiomatization. In this 

context we understand numbers as a way of singling out certain salient features of an 

empirical domain and, also, of making systematic deductions about it.     

The main result we achieve, and that agrees with Field’s discussion of representation 

theorems in Field 1980, consists in detaching numbers from empirical facts and showing how 

the two interact: we thus free ourselves from any form of holism that regards numbers as 

entities inextricably entangled with the scientific analysis of physical facts. On the contrary, 

we are in a position (here only restricted to measurement, but generalizable to full physical 

theories) to separate intrinsic facts about quantities from extrinsic facts about numbers and 

this conclusion is certainly in line with Field’s nominalism
12

 . 

On the other hand, the theory of real numbers […] was developed precisely in order to 

deal with physical space and physical time and various theories in which space and/or time 

play an important role, such as Newtonian mechanics (Field 1980: 33), so we really don’t 

want to stop at the dichotomy between intrinsic and extrinsic facts but understand, at a deeper 

level, in which sense the latter can be considered as schemata for the former. In other words, 

we need to remove ourselves from a perspective which exclusively understands the 

application of real numbers as the solving of empirical constraints, in order to see in which 

sense it is possible to see the real numbers arise from ‘experience’. In order to do this, we 

need to get back to the representation theorem and try to look more closely at its structure, in 

order to isolate another fundamental feature of measurement, that should be coupled with 

solvability, namely assignment or evaluation. A beautiful consequence of this shift of 

perspective is that it yields a nominalistically acceptable treatment not only of quantities, but 

also of their measures. 

 

4. Measurement without numbers 

Let us look at the way Suppes proves the representation theorem for extensive systems from 

his axioms (see beginning of previous section). First of all let us note that axioms (2) and (6) 

                                                
Field writes:  

 

I am saying that not only is it much likely that we can eliminate numbers from science […] but also that it is 

more illuminating to do so. It is more illuminating because the elimination of numbers helps us to further a 

plausible methodological principle: the principle that underlying every good extrinsic explanation there is an 

intrinsic explanation (Field 1980: 44). 
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imply the existence of infinitely large elements, simply because x +M x exists by (2) and is 

strictly bigger than x, by (6), so (x +M x) +M x exists and is strictly bigger than x +M x and so 

on ad infinitum. We have therefore unbounded sequences of multiples of any element of M 

(such sequences are uniquely determined by associativity ((3) plus its converse), for without it 

we should distinguish them on the basis of the way they have been generated and fix a 

uniform method of generation). On the other hand, by (7) we know that, whenever we fix any 

two elements of M, call them m and m’, there always is one multiple of the smaller that 

exceeds the bigger. Furthermore, it follows from (7) that, if m ≤M, m’, then there is an integer 

k such that km ≤M m’ <M (k+1)m so
13

 m’ can always be bracketed within an interval that 

occurs at some point of the infinite sequence of the multiples of m: since such sequence is 

unbounded, this will happen for any m’ which is bigger than m. Now we can choose m as unit 

of measure and determine m’ in terms of m with any desired precision: clearly, since we 

cannot reduce the precision by dividing m up into parts, we have to go the opposite way, and 

take bigger and bigger multiples of m, whose existence is granted, to be compared with 

multiples of m’ . The reason why this is done can be immediately illustrated by observing 

that, if m’ is 12.333 times m, this is equivalent to saying that 12333 copies of m’ will equal 

1000 copies of m: instead of talking directly about thousandths of the unit, we use the 

thousandth multiple of it. The equivalence depends on the fact that the ratio of m to m’ is, in 

both cases, the same, i.e. 12.333. Now the strategy to get a representation theorem from 

Suppes’ axioms is, strictly speaking, all contained in the observations just made: what it 

exploits is the fact that, using the properties of an extensive structure, we can construct 

unbounded standard sequences, i.e. sequences of multiples of any given element of M, that 

eventually will reach and exceed any other, bracketing it within intervals that, in the sense just 

explained, can be made to correspond to any arbitrary precision. Clearly, we do not take only 

multiples of the unit of measure m but also multiples of the objects compared against it and 

consider the inequalities or equalities arising from comparing such multiples. Using the above 

example, for instance, we get the empirical equality 12333m =M 1000m’, and we would also 

naturally get, for instance, 12300m <M 1000m’ and 12300m >M 500m’: by trichotomy, which 

is an immediate property of the empirical ordering, all empirical comparisons must have the 

form of exactly one of the three cases just exemplified. Thus we may divide the outcomes of 

all possible empirical comparisons into three classes, which will be respectively determined 

                                                
13 Note that m >M m’ is defined as ¬(m ≤M m’). 
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by the fractions 
h

k
 such that km <M hm’or km >M km’ or km =M hm’ , where k,h are positive 

integers. The reader familiar with Dedekind’s construction of the real numbers will have 

noticed that the three classes of fractions thus defined determine a cut on the real numbers and 

that this cut will be an irrational number when the third class is empty
14

. In other words, if we 

imagine to be working on the reals, we can determine any real number r using a partition of 

all the rationals 
h

k
 into those that are smaller than r, those that are bigger than it and those 

that equal it: strictly speaking, and also exploiting the fact that we are dealing with positive 

quantities, r can be uniquely determined by the positive rationals that are smaller than it 

(thanks to the fact that the rationals are dense in the reals).  

If we consider all inequalities of the form km <M hm’ and call their associated fractions 

a lower cut, then we can prove from Suppes’ axioms that such lower cut hasn’t got a maximal 

element, and therefore contains countably many fractions that form an increasing sequence: 

this sequence has always a limit in the reals (because of the property called Dedekind 

completeness) and such a limit is taken to be the measure of m’ with respect to unit m. The 

function that, once a unit m is fixed, assigns to any m’ the limit of its lower cut is a 

representation of an extensive system into the additive, positive reals: this is because the 

linearity of limits with respect to addition is just condition (ii) and because, if m’ <M m’’ then 

the lower cut determined by m’ is included in that determined by m’’, and set-theoretical 

inclusion is an order relation fulfilling (i)
15

.  

What has emerged so far is that the representation theorem for extensive measurement 

that Suppes gives is strongly connected to the mathematical idealization of a concrete 

procedure of measurement, that of comparing multiples of quantities, which I’ll call the 

method of lower cuts: since such comparisons generates any, however refined, approximation 

of the ratio of a quantity to the chosen unit of measure, real numbers are naturally introduced 

as the ideal terminations of such approximations. 

It is noteworthy that if, instead of (7), we assumed second-order Dedekind 

completeness, as Field does for lines in space-time, we would then get limits directly within 

the empirical structure: the point is that, in a sense, to assume Dedekind completeness in its 

                                                
14 This way of describing the numerical measures of quantities was firstly proposed in Hölder 1901. 
15 The strong morphism condition is obtained by restricting oneself to the subsystem of the reals determined by 

the image of the empirical domain with respect to the representation. Of course this latter won’t be one-to-one, 

because there may be quantities that are equal, and therefore generate the same cut. This is the main reason why 

in measurement one talks about homomorphisms rather than isomorphisms between structures. 
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‘nominalistic’ version and to use the reals as uniquely determined measures of a quantitative 

domain is really the same thing. On the one hand we postulate completeness as a feature of 

the reals, on the other we postulate the existence of ideal quantities that provide the limits to 

our sequences. Clearly the reason why the reals, as Field himself remarks, have been 

developed to treat motion in classical physics, i.e. to describe such concepts as instantaneous 

velocity, which require the notion of limit, was exactly because they provided an abstract 

scheme for the idea of continuous variation and, at the level of measurement, their importance 

lies in the fact that they provide an abstract schema for the idea of ‘true value’ of a quantity, 

which improves on any possible approximation. Yet in both cases we’re talking about ideal 

elements, whose employment is justified not simply by reasons concerning computational 

convenience,  but also by the kind of empirical setting they were designed to capture. To 

assume this standpoint doesn’t seem to me to imply an alignment with the platonistic 

positions Field rejects, exactly because I fully accept his account of applicability: on the other 

hand it seems to me that the distinction between strong structural assumptions of a 

nominalistic kind – those constituting the ontological content of nominalism – and 

mathematical assumptions becomes very blurry when we take into account the schematic use 

of mathematical entities (I’ll get back to this point in the last section). 

Such schematic use, in turn, can be thought of as performing one fundamental 

function, besides that of using numbers to describe physical facts: this is to assign to each 

quantity a position within a reference frame, and to present the class of positions thus 

obtained as an abstract object, encoding the salient features of a quantitative domain. In order 

to clarify this point, I need to introduce a method to ‘nominalize’ the measures of quantities, 

which is nothing but the technique developed in Niederée 1992
16

. 

The basic idea is the following. Suppose there is an ideal
17

 experimenter that carries 

out comparisons and concatenations on objects of the domain M: what he essentially does is 

to test whether certain quantities are equal or not and, in the latter case, which one is bigger or 

smaller. Let us also suppose that the experimenter records all the outcomes of the tests he 

performs, but that he does it in a first-order language L containing, apart from all the usual 

logical symbols, countably many variables and only two non-logical constants, denoting 

                                                
16 Although heavily restricted to the context at hand, for Niederée’s results are far more general (and equally 

interesting in both their mathematical and philosophical implications). 
17 I talk about an ideal experimenter because I’m assuming here that he may be able to perform and record 

infinitely many operations. 
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respectively the binary relation ≤M and the binary operation +M
18

. After the experimenter tests 

two elements of M, say m and m’, he records the infinitely many outcomes of his tests in the 

form of a list, that I’ll call an empirical record
19

, of atomic formulas of L like kx <M hy, where 

kx and hy are only abbreviations for the k-th iteration of concatenation (here thought of as a 

function involved in term-formation) on x and the h-th iteration of concatenation on y, so that 

no numerals are actually used. We may assume that the experimenter is only interested in 

inequalities of the specified kind, and disregards their converses as well as equalities.  

We can thus think of an extensive system M as a model for atomic formulas like kx <M 

hy and say, if in the system km <M hm’ holds that kx <M hy is true in M under the assignment 

which maps x and y into m and m’ respectively.  

Suppose in particular that m has been chosen as unit of measure and we restrict 

ourselves to atomic formulas wherein variable x occurs, forming a class A, and to assignments 

that map x into m only. It is clear that, calling a any such assignment, the formulas of A that 

are all simultaneously satisfied under an assignment a, that maps y into m’ , are all and only 

those atomic formulas in the empirical record of m’, when m is chosen as unit (of course, if 

m’’ is equivalent to m’, i.e. if they have the same mass, in the case of mass-measurement, then 

they identify the same empirical record). In particular, if it is the case that m’ <M m’’ , then 

their empirical records will differ (for they correspond to two lower cuts, one strictly included 

in the other), which is to say that there is at least one atomic formula in the empirical record 

of m’’ which doesn’t occur in the empirical record of m’: we see, in other words, that 

empirical records are subsets of A, i.e. elements of its powerset P(A) that separate the 

elements of M, in the sense that, to non-equivalent elements of M different elements of P(A) 

are associated, while only one subset of A is associated to any element of M.  

This last remark shows that there is a function (not necessarily one-to-one) from the 

elements of M into their empirical records and it is easy to see that set-theoretical inclusion 

between elements of P(A) corresponds to order on elements of M while, using that same 

function from M into P(A), we can also induce on P(A) an operation behaving like 

concatenation on M
20

. But in this way we have just obtained a structure-preserving mapping 

                                                
18

 In what follows I’ll use, just for convenience, the same symbols to denote both the relation and operation 

defined on an extensive domain and the symbols that denote them. 
19 Niederée 1992: 248 talks in this case about complete records. I preferred to use the adjective ‘empirical’, 

although it is strictly speaking not very appropriate, just to stress that we are talking about classes of statements 

with an intrinsic meaning, that ultimately refers to concrete objects. 
20 If the function in question is f, it is sufficient to define an operation +P(A) such that f(m) +P(A) f(m’) = f(m +M 

m’). 
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from an extensive system into the domain of its associated empirical records, that is, a new 

representation theorem: in model-theoretical terms, empirical records are just the types of 

elements of M with respect to set A and unit m.  

The interesting fact is that we’re now measuring quantities on the empirical records 

describing their behaviour: the reason why such measures are nominalistically acceptable is 

that they are not abstract entities like numbers, but simply inscriptions, though idealized ones 

(as we must have infinitely many of them).  The reason why, on the other hand, such 

measures are epistemologically interesting is that each of them is a kind of complete report of 

the way any object in M behaves with respect to a unit under a fixed procedure involving 

standard sequences. Thus measures here are but descriptions of the position of an object 

within a quantitative domain with respect to a unit, which fixes a kind of reference frame. 

In the numerical case, what I focused upon discussing the representation theorem was 

the idea of solving empirical constraints numerically; here, on the other hand, the 

representation theorem underlines another aspect of measurement, namely the fact that it 

locates the position of empirical objects within a space of records determined by a procedure. 

A full empirical record tells us not only how an object behaves with respect to a unit but, at 

least indirectly, it tells us why it differs from any other (non-equivalent) object in that domain: 

this is what I call the evaluation of a quantity
21

 and, as it can be seen, it is an essentially 

relational process, because it is uniquely determined by an infinity of interactions between an 

object and a unit of measure.  

It’s now straightforward to see how evaluation and solvability are connected together, 

for there’s a natural way of associating to any empirical record a lower cut, that has a limit in 

the reals. Using this fact, is also possible to see exactly how the reals can be regarded as 

schematic versions of empirical records: as limits of lower cuts they ‘encode’ the sequence of 

all approximations that tend to them. For this reason, to apply the reals means to use a general 

scheme which reduces empirical records to positions along a continuum, i.e. presents a class 

of positions within a reference frame as an abstract object: reasoning is facilitated by such a 

scheme, and this exactly because of its deep connection with empirical records. Such 

justification of the applicability of the reals is better than one stressing the solvability-aspect 

of a representation theorem only, exactly because it takes into account the evaluation-aspect, 

makes apparent that real numbers can be considered indices of sequences of approximations, 

and shows a sense in which they may be said to possess some degree of intrinsic content (to 

                                                
21 On this point compare Niederée 1992: 252, on a structure being representable through values of measurement. 
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the extent approximations correspond to empirical records). In this sense it is clear that real 

numbers emerge as an idealization of an empirical procedure and cannot be considered purely 

extrinsic to it (for similar reasons differentiable functions emerge from a certain ideal notion 

of variation, for instance of position through time). In other words, since the concept of an 

extensive system axiomatized as above is essentially based on the idea that we measure by 

forming standard sequences and comparing their finite segments, and since the notion of real 

number emerges exactly from classes of such comparisons, it must be concluded that it is 

strictly connected to the (indispensable) concept of extensive quantity and cannot be reduced 

to simply a tool that is invoked from the outside in order to deal with it. This conclusion is 

presumably in line with Field’s anti-realism, but not with his instrumentalism: indeed it calls 

for revising the contrast between nominalistically acceptable entities and mathematical ones.  

 

5. Epistemological conclusions 

I take it that I have shown that the reals, in the case of their application to extensive quantities, 

play a schematic role in providing a perfectly general series of labels, whose order and metric 

structure extract the salient features of a physical domain, that are revealed through a 

physically specifiable measurement procedure. The completeness of the reals, within this 

perspective, provides us with an abstract object (the ordered series of the reals, but more 

generally a continuum) that displays, as its elements, all the possible empirical records arising 

from applying the method of standard sequences with arbitrarily large multiples. Indeed the 

axioms for an extensive structure, while sufficient but not necessary conditions to interpret 

numerically an ordered algebra
22

 on the additive reals, are necessary and sufficient for 

numerical interpretation carried out through the method of lower cuts, which actually is a 

strong form of the method of standard sequences
23

.  

To put it more clearly, the axioms reflect exactly the kind of empirical information 

that is determined by the reals when thought of as limits of approximations: from this 

standpoint there appear some significant similarities between the axiomatic characterization 

of extensive quantities and the structure of the reals, conceived as cuts of rationals. It is true 

that on the one hand we make assumptions about theoretical entities, that are nominalistically 

acceptable, and on the other hand we talk about numerical entities, that are not, but on both 

                                                
22 That is, a set on which an order relation and a binary operation are defined. 
23 In general, such a method can be carried out even with weaker axioms, for instance restricting closure: but in 

that case we are not allowed, as we just did in the previous section, to form arbitrarily large multiples of any 

element of a domain, because they might not be defined. So it is probably better to say that Suppes’ axioms are 

necessary and sufficient to apply some strong version of the method of standard sequences. 
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sides we make those assumptions for the same schematic reason, which is to formally capture 

a measurement procedure, whose mathematical generalization is just the method of lower cuts 

itself. We have therefore an interaction between a concrete procedure, its idealized version, 

axiomatically formulated, and the arithmetic needed to portray it numerically and clearly the 

features of the procedure give the common conceptual core of its synthetic and analytic 

depiction.  

We work on quantitative data with an idealized model (an extensive system), that 

yields a highly regular version of them, on which we can argue in mathematical form, i.e. 

using proofs: on the other hand a representation theorem transfers our reasonings to a 

numerical domain, but one of the reasons why this latter domain preserves the information we 

get from the formal model is that its elements can be thought of as generated by infinite 

sequences of empirical comparisons and, as limits of them, concisely contain the notion of 

approximation which is involved in a comparison procedure. 

These conclusions of course do not imply that we should naively press for a sort of 

identification of intrinsic entities with numerical ones, under the general category of ideal 

entities, because if we did that, we would lose, together with our analysis of applicability, the 

ability to determine, given the primitive notions that we want to use in order to describe a 

certain class of phenomena, how much arithmetic is needed in order to treat that class 

numerically. For example, when we coordinatize the points on a line we don’t need to invoke 

the full field-structure of the reals nor indeed their metric structure, as there is not, in this 

case, an additive operation between points of a line. In general, numerical operations are only 

satisfactorily analysed into their empirical components when a distinction between intrinsic 

content and representing structure is kept in mind and this has, in addition, several 

consequences for a notion of objective content of a theory, which, for example, plays a 

definite role in the applications of measurement
24

.  

It is, on the other hand, noteworthy that the choice of a representing numerical 

structure and the choice of the axioms that entail the representation theorem are sometimes 

closely intertwined: in the case of extensive quantities a real representation is strongly forced 

                                                
24 One problem, that has arisen especially in economics and psychology, was that of finding a way to 

discriminate the empirically meaningful results among those determined by the manipulation of numerical values 

obtained through measurement and reflecting, for instance, ordering of preferences or of subjective sensations. 

What is debated is whether the application of certain numerical functions, i.e. statistics, to measured values, 

yields empirical information about the quantities that are measured (criteria to decide whether this is the case 

have been developed, on the basis of the invariance properties of measurement scales obtained through 

uniqueness theorems). Of course such a problem involves a distinction between those numerical facts that 

haven’t got an empirical content and those that have. 
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by the introduction of the Archimedean axiom (7). This happens because Archimedes’ 

governs the finite comparability of quantities and so plays a crucial role for the possibility of 

constructing approximations with the method of lower cuts, while on the other hand some 

version of archimedeanity is always entailed by the existence of a real representation (not by 

chance, obviously, but because of the empirical intuition underlying the construction of the 

reals). However, archimedeanity is empirically necessary only insofar as we fix an empirical 

procedure (involving unbounded standard sequences) based on a precise concept of 

approximation, but it should be observed that there exist other measurement procedures, on 

the basis of which successive approximations might not play a particularly significant role. If 

we therefore decided to change procedure, axiom (7) might become a purely theoretical 

condition, that were simply adopted to fix a representing structure, namely the standard reals 

(instead of, say, the non-standard reals). To make this remark less generic, an alternative 

concrete measuring procedure
25

 for extensive quantities, well-known to measurement 

theorists, may be sketched here: we start from atomic formulas like the inequalities of 

previous sections, but this time without any restriction on the occurrences of variables and 

also allowing for weak inequalities; we, nevertheless, only take into account finite lists of 

inequalities, denoting empirical comparisons or data; to represent an extensive system thus 

becomes to find real numbers that simultaneously solve our finite set of inequalities or, 

equivalently, satisfy a finite set of data.  

It is quite clear that no notion of approximation is involved, the same uniqueness 

theorem for extensive quantities continues to hold and, finally, we use the more realistic 

condition of restricting ourselves only to finitely many atomic formulas. It has been shown by 

Adams et al.(1970) that, on the basis of this measurement procedure, a system of data of the 

specified kind
26

 is solvable on the reals if and only if it satisfies axioms (1) to (6), i.e. 

independently of Archimedes. This clearly shows that changes in the measurement procedure 

induce changes in the empirical content of the axioms and, in particular, that, on the basis of 

this fact, they allow for a larger freedom in the choice of representing structure. In the case 

just mentioned we might either add the Archimedean axiom and fix the usual notion of 

approximation or, using the elementary equivalence of first-order models of the reals, which 

ensures that the same system of data (first-order formulas) has solutions on the non-standard 

reals as well, find a representation on a non Archimedean domain, thereby changing our 

                                                
25 Here I take ‘measuring procedure’ and ‘ method to establish a representation’ to be synonymous. 
26 Where data here are finite segments of empirical records or their combinations. 
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notion of approximation, that now allows for intrinsic infinitesimal fluctuations of quantities 

(something that doesn’t appear particularly extravagant, having in mind e.g. uncertainty 

principles).  

Here again we see that, under changes of measuring procedure, the relationship 

between axioms and representing structures becomes slightly more complex than in the cases 

examined in the previous section: here the choice of a numerical structure carries with itself a 

kind of theoretical presupposition concerning the notion of approximation involved and, 

ultimately, the concept of quantity that one extrapolates to. The point of this discussion is to 

stress that, on the one hand, different representing structures possess different evaluative 

features, i.e. their formal properties are made to correspond to certain general features of an 

empirical domain, while on the other hand they generalize and extend what is given through 

experiment. We see that there is a non trivial interplay between an empirical structure and  the 

way it may be represented, numerically or non numerically, due to the fact that the structure 

whereon a given empirical domain is interpreted provides a universal characterization of the 

former. What I mean by this expression may be explained with reference, again, to the case of 

real measures for extensive quantities: when they are introduced, they appear as limits of 

ideally infinite sequences of approximations and it is thus the completeness of the reals, i.e. a 

topological property of a numerical structure, to express the empirical behaviour of the 

concrete notion of approximation of a quantity with respect to a unit by means of successive 

comparisons of multiples. Completeness says that any sequence of numerically determined 

approximations (which is increasing and bounded above) has a least upper bound or, 

equivalently, that it converges to a uniquely determined value. This is in fact an axiom of the 

reals, but it plays a crucial role in the representation theorem for extensive magnitudes 

because it says what would eventually happen if we could indefinitely refine the accuracy of a 

measurement procedure.  Obviously we are never in a position to test such a possible 

outcome: the importance of stating it though doesn’t lie in its testability but rather in the 

possibility of giving a uniquely determined description of extensive quantities as a subsystem 

of an Archimedean continuum. The formal structure of measures, i.e. the formal structure of 

the reals, provides then a general conceptual framework within which it is possible to 

understand the behaviour of quantities: this framework goes beyond experience and it is only 

in this way that we can give a completely determined description of quantities, because 

through experience only we would be forced to stop at finite truncations of potentially infinite 

sequences of approximations. Here it is clearly evinced that the reals play a schematic role in 



Measurement-Theoretic Observations on Field’s Instrumentalism – Davide Rizza 168 

the theory of extensive quantities, in the sense that they provide a systematic way of fixing 

their interrelationships, which builds on experience (the concrete fact that we can improve the 

accuracy of a measurement procedure) but goes beyond it, a necessary condition to 

‘complete’ or ‘close’ the limited information which is experimentally available. Therefore 

real numbers appear as an extrapolation from the structural features of empirical domains of 

extensive quantities
27

: this perspective has some important philosophical consequences. One 

of them is that it gives an account of applicability that clearly avoids and improves on Field’s 

view about the extrinsicity of representing structures: the reason why we apply numbers to 

objects depends on the fact that the former provide an objective and universal characterization 

of the latter or, equivalently, from a twofold requirement of compatibility with experience and 

generality. 

More precisely, the first requirement is satisfied by the fact that the (ordered, positive) 

real numbers are a model of Suppes’ axioms, i.e. they obey the empirical constraints spelled 

out in the axiom system, while the second is satisfied by the fact that any model of Suppes’ 

axioms finds a uniquely determined evaluation for its elements (once a unit of measure has 

been fixed) on the reals. Like Field, I do not consider numbers as independently existing 

entities that prove essential to the treatment of extensive quantities but I think it particularly 

significant to see them as a conceptual framework emerging from an analysis of experience 

coupled to a generalization from experience.  

If instead of the real numbers directly an axiom system for them is considered, the 

previous observations may be rephrased in terms of the interrelationships between a set of 

constraints for quantities, e.g. Suppes’ axiom system, and a set of constraints for continua 

with an additive structure on them, i.e. an axiom system for complete
28

 ordered semigroups, 

amongst which the additive reals are to be counted. In terms of solvability, we may say that 

any solution to the first set of constraints can be associated with a system of labels satisfying 

the second set of constraints, while in terms of evaluation we may say that the second set of 

constraints is such that its solutions reflect all the possible interactions between the empirical 

elements satisfying the first set
29

. Thus by the schematic role played by the reals in extensive 

                                                
27

 It has to be noted that Suppes’ axioms are in effect already an extrapolation, since their models are forced to 

be infinite.  
28 Where, if an Archimedean condition occurs among the axioms for an extensive structure, completeness is 

thought of as being formulated as an axiom rather than an infinite scheme of axioms. 
29

 Note that this view can be generalized to other theories of measurement and it is by no means restricted to 

extensive quantities. Any other case could be treated exactly as the one I have considered, with the sole 

exception of considering types of structure other than the one described in this paper.  



Measurement-Theoretic Observations on Field’s Instrumentalism – Davide Rizza 169 

measurement I simply mean the kind of interaction between sets of constraints just described: 

the schemas concerned are, in this case, axiom systems
30

.  

The analysis of the schematic role played by mathematical objects thus developed 

makes it possible to draw two conclusions concerning Field’s nominalism. The first one, 

whereon I indirectly already insisted upon, is that the instrumentalist position coupled with his 

nominalism should be rejected on the basis of the evaluative role of numerical entities. 

Incidentally, instrumentalism based on the concept of extrinsicity seems to have much in 

common with mathematical realism, in that it takes for granted (or at least it can well do it) 

the standard realist view on numbers and rejects it only insofar as it can rely on a way for 

dispensing with numbers. From the standpoint I have articulated in this paper, such a form of 

instrumentalism is unacceptable because it fails to acknowledge the actual interaction between 

mathematical and empirical structures  and the way in which the first ones may be seen to 

emerge as general theoretical hypotheses or extrapolations concerning the second ones.      

The second conclusion concerning Field’s nominalism is relative to his assertion that  

 

Postulating uncountably many physical entities […] is not an objection to nominalism; nor 

does it become more objectionable when one postulates that these physical entities obey 

structural assumptions analogous to the ones that Platonists postulate for the real numbers 

(Field 1980: 31).  

 

 

This statement could be easily reread as an assertion of the evaluative status of mathematical 

objects, because it stresses the fact that we construct models for empirical phenomena using 

those structural constraints that are usually imposed upon numerical entities, which in turn 

depends upon the fact that numerical entities themselves can be considered idealization of 

concrete procedures, as we have seen in the case of additive quantities.  

At the same time, the fact that the nominalist should ontologically commit itself to the 

existence of entities that he postulates through extrapolations (e.g. the fact that there are 

uncountably many entities) seems too strong and unsatisfactory in the light of, for instance, 

the results of Adams et al. (1970) mentioned above, which clearly show the possibility of 

different generalization from the same class of empirical data. Again, taken at face value, 

                                                
30 Now the previously discussed example taken from Adams et al. (1970) shows that, if the set of empirical 

constraints does not contain Archimedes’ axiom, we can make it interact with a first-order axiomatization of 

complete ordered semi-groups, which allows for the possibility of non Archimedean measures. This means that, 

for a class of empirical interactions within an extensive domain, we are in a position to extrapolate from it in 

different ways, thereby obtaining different general notions of extensive quantity: the same outcome would occur 

if we assumed first-order completeness as an empirical axiom.  
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Field’s nominalism exhibits some form of isomorphism to mathematical realism, with the 

difference that it rephrases its claims in intrinsic terms, because it doesn’t mention the fact 

that the intrinsic assumptions upon which it is based go beyond direct experimental evidence.  

It is clear that this is not one of Field’s concerns, and yet it should be if the analysis of 

applicability that he implicitly provides is to be taken seriously, while it seems advisable for 

his nominalism because it would supplement it with a critical assessment of certain strong 

assumptions made on synthetic models of physical settings. We may regard these assumptions 

as constraints with a heuristic or theoretical value which direct our ways of reasoning on 

certain empirical facts, without thereby straightforwardly committing ourselves to their 

ontological import, as long as we see constraints as axioms and the relation of logical 

consequence as directing the way in which we articulate the heuristic or theoretical 

implications of the axioms (in which case it becomes a problem to have, as happens in Field 

1980, a notion of logical consequence which is not recursively axiomatizable). Such 

conclusions are quite natural from the schematic viewpoint I have presented, if we think, as 

suggested above, of schemas as sets of constraints or axioms (cf. the previous analysis of the 

role played by the completeness of real numbers with respect to extensive quantities, which 

shows how a continuum can generalize an additive structure
31

: here we start from 

consequences of the empirical axioms, that describe sequences of approximations, and look at 

their interaction with the completeness axiom for the reals, which establishes a representation 

theorem).  

To conclude, I think it is fruitful, on the basis of the schematic account of applicability 

I have proposed, to modify Field’s view by essentially dropping its instrumentalistic 

implications and reconsidering the role of strong structural assumptions on empirical settings, 

in order to obtain a deeper understanding of the way we use numbers (and, more generally, 

mathematical theories) to talk about facts.  

 

         Davide Rizza  

         University of Sheffield 

 

 

 

                                                
31

 Similar observations could be extended to other strong assumptions on extensive quantities, like closure with 

respect to concatenation, by examining axiom systems that do not satisfy them and yet are representable on the 

additive reals. 



Measurement-Theoretic Observations on Field’s Instrumentalism – Davide Rizza 171 

Bibliography 

Adams, E.W., Fagot R.F. and Robinson, E.R. (1970) ‘On the Empirical Status of Axioms in 

Theories of Fundamental Measurement’, Journal of Mathematical Psychology, 7, 379-

409. 

 

Falmagne, J.C. (1975) ‘A set of independent axioms for positive Hölder Systems’, Philosophy 

of Science, 42,137-151. 

 

Field, H. (1980) Science without Numbers. Oxford: Blackwell. 

 

Hölder, O. (1901) ‘Die Axiome der Quantität und die Lehre vom Mass’ Berichte über die 

Verhandlungen der königliche sächsischen Akademie der Wissenschaften zu Leipzig 

Mathematisch-Physische Classe, 53,1-64.  

 

Krantz, D.H., Luce, R.D, Suppes, P. & Tversky, A. (1971) Foundations of Measurement, 

Volume I: Additive and Polynomial Representations. New York: Academic Press. 

 

Niederèe, R. (1992) ‘What do numbers measure? A new approach to fundamental 

measurement’, Mathematical Social Sciences, 24, 237-276. 

 

Suppes, P. (1951) ‘A set of independent Axioms for Extensive Quantities’, Portugaliae 

Matematica, 10,163-172. 

 

 


