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Abstract 

In this paper, I argue that symmetry principles in physics (in particular, in quantum mechanics) 
have a methodological character, rather than an ontological or an epistemological one. First, I 
provide a framework to address three related issues regarding the notion of symmetry: (i) how the 
notion can be characterized; (ii) one way of discussing the nature of symmetry principles, and (iii) 
a tentative account of some types of symmetry in physics. To illustrate how the framework 
functions, I then consider the case of the early formulation of quantum mechanics, examining the 
different roles played by symmetry in this context. Finally, I raise difficulties for ontological and 
purely epistemological interpretations of symmetry principles, and offer a methodological 
alternative. 
 
 

 

1. Introduction 

There’s no doubt that symmetry principles play a crucial role in physics. They also play a 

significant role in the philosophical reflection about physics. One can develop different 

perspectives about the nature of theoretical practice by examining different roles that 

symmetry principles play in scientific activity (see, for instance, van Fraassen 1989: 233-

289, Hughes 1989, and Brading and Castellani (eds.) 2003). Not surprisingly, there have 

been a number of discussions about the nature of symmetry principles (see, e.g., Weyl 1952, 

Wigner 1967, and more recently, Kosso 2000a, 2000b, and 2000c). For the most part, the 

discussion has focused on specific details of the physics, which can only be praised, of 

course. But, to obtain a broader perspective, it’s important also to examine whether 

symmetry principles have an ontological significance as well. 

In this paper, I will discuss this aspect of the nature of symmetry principles: which 

ontological consequences (if any) they have. First, I sketch a framework to conceptualize 

the issue, reviewing, in particular, the distinction between symmetries in the laws and 

                                                 
1 My thanks go to Jody Azzouni, Katherine Brading, Elena Castellani, Steven French, R.I.G. Hughes, Alirio 
Rosales, and Bas van Fraassen for helpful discussions. 
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symmetries in the solutions. I then apply the framework to discuss the different uses of 

group theory in quantum mechanics by Weyl (1931) and Wigner (1931). I argue that Weyl 

developed a foundational approach with regard to symmetries in the laws, whereas Wigner 

used group theory for applications of quantum mechanics, emphasizing symmetries in the 

solutions. Both approaches (Weyl’s and Wigner’s) are necessary to understand the content 

of quantum mechanics, but they are not sufficient, given that the approach via Hilbert 

spaces developed by von Neumann (1932) (or something along its lines) is also needed. I 

close the paper by returning to the issue of the nature of symmetry principles in quantum 

mechanics, and I argue, in light of the discussion of Weyl, Wigner and von Neumann, that 

symmetry principles play an important heuristic and methodological function, but they play 

no ontological role. 

 
 
2. A Framework: Symmetry in the Laws and Symmetry in the Solutions 

In order to examine the role of symmetry in physicsand for brevity considerations, I’ll 

focus the discussion only on quantum mechanicsit’s important to have a framework to 

provide some guiding questions and tools to analyze how symmetry is used in the 

formulation of quantum theory. The framework has three main components: (i) a 

characterization of the notion of symmetry, (ii) a discussion of the nature of symmetry 

principles, and (iii) a tentative account of some types of symmetry in physics. These 

components provide a context to examine the broader issue of the nature and role of 

symmetry. The usefulness of the framework will emerge from the way it illuminates the 

latter notion in physics. Briefly, the framework can be presented in the following terms. 

 

2.1. The notion of symmetry  

In its most general formulation, symmetry is a transformation that leaves the relevant 

structure invariant (see van Fraassen 1989: 233-348, van Fraassen 1991: 21-76, and Weyl 

1952). Of course, what counts as relevant changes from context to context. In this sense, 

the notion of symmetry has an inherently pragmatic character. It depends on what users 

take to be relevant in a given context, and this will determine which features of the structure 
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in question we aim to preserve, and which we don’t. This doesn’t mean that it’s enough for 

users to decide which features are going to be preserved for the latter to be actually 

preserved. There are objective constraints to be metconstraints whose obtaining doesn’t 

depend on the particular users or context. For example, no transformation leaves the 

cardinality of natural numbers invariant while establishing a one-to-one and onto mapping 

from natural to real numbers. In this sense, it’s an objective fact about these structures that 

no such invariance can be found. One cannot simply decide to create invariance. However, 

the pragmatic character remains. After all, it’s still crucial to decide which components of a 

structure are taken to be relevant in the structure preservation process. For the same reason, 

the notion of invariance is also context dependent. In different contexts, different kinds of 

structure are preservedthat is, different parts of the structure are left invariant. 

As is well known, this notion of structure preservation receives its mathematical 

formulation via the notion of isomorphism. It’s thus not surprising that isomorphism is also 

a context-dependent notion: different kinds of structure are preserved in different contexts 

(see also van Fraassen 2002: 22-24). For instance, in arithmetic, what is preserved between 

two isomorphic structures, besides the ordering among natural numbers, are the properties 

of the arithmetical operations over such numbers. In set theory, the crucial features to be 

preserved by isomorphic structures are quite different, having to do with the properties of 

the membership relation among sets. Or, in linear algebra, other properties are preserved: 

the isomorphism preserves the mathematical properties of vectors, which strictly speaking 

have nothing to do with the properties of set membership.2 

When the notion of invariance is highlighted, it’s important, again, to be clear about the 

kind of things that are left invariant. An important type of invariance here is the invariance 

of truth-values. A mathematical formulation of this type of invariance is provided by the 

notion of elementary equivalence. That is, if two first-order structures are elementarily 

equivalent, then every sentence that is true in one structure is true in the other, and vice 

                                                 
2 Unless one adopts a radical form of set-theoretical reductionism, according to which vectors are a particular 
kind of set, the two domains (set theory and linear algebra) are distinct from one another. But this radical 
reductionism doesn’t seem to be justified. In particular, it leaves a number of issues about mathematical 
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versa. The invariance, in this case, has to do with the truth-values of the sentences under 

consideration. 

But what do the notions of symmetry, isomorphism, and elementary equivalence have in 

common? The discussion above implicitly provides an answer to this question. The three 

notions can be put into important heuristic uses. If two structures are isomorphic, then they 

are elementarily equivalent.3 Suppose that a sentence P is true in a structure S. Then by 

establishing that S is isomorphic to a structure S′or is elementarily equivalent to S′we 

can immediately conclude that P is also true in S′. This is a transfer principle, a principle 

that allows one to transfer results from one domain into another. What symmetry provides 

is precisely a form of transfer principle. By leaving some structure invariant, symmetry 

allows us to extend results from one domain into a different one, based on the structural 

similarity between the domains. For example, with the formulation of nonstandard analysis, 

Abraham Robinson explored various forms of transfer principles, using in particular model-

theoretic results, such as the compactness theorem, as the basis for model construction in 

mathematics.4 By judiciously choosing the models to explore, Robinson managed to 

establish important new results, including results about the mathematical foundations of 

quantum mechanics, such as the invariant subspace problem5 (see Robinson 1974: 195-

201). 

Thus, due to the heuristic use that the notions of symmetry, isomorphism, and 

elementary equivalence can be put into, there is an important relation between them. 

Symmetry principles provide a way of exploring the heuristic role of these notions. 

                                                                                                                                                     
practice completely unsettled. Nothing in the practice requires such a reductionism, and typically, vectors are 
not formulated in terms of sets. 
3 The converse is not true in general, of course, given the existence of nonstandard models of arithmetic. Any 
two such models are elementarily equivalent, but their domains typically have different cardinalities, and so 
they are not isomorphic. 
4 The compactness theorem provides a systematic strategy to build models of various kinds of theories. 
According to the theorem, if M is a set of sentences such that every finite subset of M is consistent, then M is 
consistent (for a discussion, see Robinson 1974: 13-14). 
5 What Robinson proved, in joint work with A. Bernstein, was the following theorem: Let T be a bounded 
linear operator on a Hilbert space H, and let p(z) ≠ 0 be a polynomial with complex coefficients, such that p(T) 
is compact. Then T leaves invariant at least one closed linear subspace of H other than H or {0} (for a 
discussion and proof, see Robinson 1974: 195-201). It’s worth noting that this result is established based on 
symmetry considerations. 
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2.2. Symmetry principles  

There are, of course, several ways of formulating symmetry principles. The formulation I’ll 

adopt is the one that highlights the heuristic role of symmetries. As I’ll argue below, this is 

the most significant role of symmetries in physics (particularly in quantum mechanics), and 

it’s important to be clear about this role to begin with. 

But even emphasizing the heuristic role is not enough to provide a unique formulation of 

a symmetry principle. There are two, closely related, principles that need to be captured 

here (see van Fraassen 1989: 233-246, and van Fraassen 1991: 24-33): 

 

(SP1) Problems that are essentially the same must have essentially the same solution. 

 

This formulation already emphasizes the heuristic role of symmetries: they guide the 

formulation of a problem and indicate strategies for its solution. On the one hand, (SP1) 

emphasizes the importance of looking for symmetries in a problem, and identifying the 

relevant features that characterize the problem. These features are then used to generate a 

new problemrelevantly similar to the original problem. By solving the new problem, 

(SP1) then allows us to transfer the solution to the original problem. Basically, (SP1) 

suggests a general guideline for problem solving, and by following this guideline, more 

“structure” is generatedgiven that a new problem is formulated. In turn, by using the 

additional structure, a different, but related, problem is solved, which then provides the 

solution to the first problemgiven (SP1). 

The second formulation of the symmetry principle underwrites the fact that symmetry is 

indeed a matter of structure preservation. If some symmetry is broken, this results from the 

introduction of a previously ignored asymmetry (see, again, van Fraassen 1989: 239-243). 

In other words: 

 

(SP2) Any asymmetry in a problem must come from another asymmetry. 
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By identifying the “original”, more basic asymmetry, one can obtain additional information 

regarding the overall characterization of the problem at hand. This, in turn, may provide 

additional resources to solve the problem. Together, (SP1) and (SP2) stress the heuristic 

role that is played by symmetry: the importance the latter has in problem solving. 

 

2.3. Types of symmetry  

Finally, there is a significant distinction between types of symmetry. It is the distinction 

between (i) symmetries in the laws, and (ii) symmetries in the solutions (Kosso 2000a: 359, 

Kosso 2000b and 2000c, Wigner 1967, and Ismael and van Fraassen 2003). In some cases, 

symmetries are found in the very formulation of fundamental principles in physicsin 

basic “laws of nature”.6 These are the symmetries in the laws. In other cases, symmetries 

are found in the solutions of relevant equations. These symmetries may or may not be found 

in the fundamental laws themselves. But the fact that the symmetries may be found in the 

solutions is significant, and deserves mention. 

The distinction between these types of symmetry is important, given that it highlights the 

different levels in which symmetries may occur. Although symmetry itself already indicates 

some level of generality, the generality of the symmetries may come in different 

levelsand this is exactly what the distinction emphasizes. As we will see, the distinction 

will play an important role in the discussion that follows. 

 
 
3. Three Uses of Symmetry Principles in Quantum Mechanics: The “Sandwich” 

Model 

In light of the framework above, I will consider the case of quantum mechanics, and 

illustrate how the framework can illuminate the topics under consideration. In particular, 

I’ll examine three related uses of symmetry principles in quantum theory. (i) I’ll discuss 

                                                 
6 I am using here the terminology of “laws of nature” that became established in the literature, without 
assuming the existence of anything like real modalities in nature. Whether there is anything corresponding to a 
philosophically robust notion of law of nature is not at all clear. Personally, I think van Fraassen has mounted 
a persuasive skeptical challenge for anyone who wants to claim that there are such laws (see van Fraassen 
1989: 17-128). 
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Weyl’s use of group-theoretic principles in the foundations of quantum mechanics, 

indicating that it provides a case of symmetry in the laws. (ii) I’ll examine Wigner’s use of 

group-theoretic principles in the applications of quantum mechanics, indicating that it is a 

case of symmetry in the solutions. (iii) I’ll discuss von Neumann’s introduction of Hilbert 

spaces in quantum mechanics, indicating that it illustrates the heuristic role of symmetry 

principlesin the sense of (SP1) and (SP2) discussed above. This will pave the way for a 

discussion of the nature of symmetry principles in quantum mechanics. 

In 1925 and 1926, two entirely distinct formulations of quantum mechanics were 

devised. In 1925, Heisenberg, Born, Jordan, and Dirac formulated matrix mechanics in a 

series of papers; in the following year, Schrödinger articulated wave mechanics also in a 

series of works.7 The two formulations couldn’t be more different. Matrix mechanics is 

expressed in terms of a system of matrices defined by algebraic equations, and the 

underlying space is discrete. Wave mechanics is articulated in a continuous space, which is 

used to describe a field-like process in a configuration space governed by a single 

differential equation. Despite the differences, the two theories seemed to have the same 

empirical consequences. For example, they yielded coinciding energy values for the 

hydrogen atom. 

But how is it possible that theories that are so different yield the same results? The 

natural answer is to claim that the theories are equivalent. Schrödinger and Dirac made 

partially successful attempts in this direction. Ultimately, the attempts didn’t succeed. In 

Schrödinger’s case, what was established was only a mapping assigning a matrix to each 

wave-operator, but not the converse (Schrödinger 1926; for a discussion, see Muller 1997: 

49-58). Dirac, in turn, did establish the equivalence between the two theories, but his 

method required the introduction of the so-called δ-function, which is inconsistent (Dirac 

1930). 

It is in this context that von Neumann introduced a radically different proposal, 

formulating his approach in terms of Hilbert spaces (von Neumann 1932). Von Neumann 

                                                 
7 For a detailed critical discussion, and references, see Muller (1997). 
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noted that the mathematical spaces used in the formulation of wave and matrix mechanics 

were very different (one space was discrete, the other continuous). However, if we consider 

the functions defined over these spaces, we obtain particular cases of Hilbert spaces. This 

suggested that the latter provide the appropriate framework to develop quantum mechanics. 

And von Neumann’s celebrated proof of the equivalence between wave and matrix 

mechanics established an isomorphism between the corresponding Hilbert spaces. 

But there was a further reason for the use of Hilbert spaces. They provide a 

straightforward setting for the introduction of probability in quantum mechanics. This is a 

crucial issue, given the irreducibly probabilistic character of the theory. And in fact, in a 

paper written in 1927 with Hilbert and Nordheim, the problem of introducing probability 

into quantum mechanics had been explicitly addressed (see Hilbert, Nordheim and von 

Neumann 1927). The approach was articulated in terms of the notion of the amplitude of 

the density for relative probability (for a discussion, see Rédei 1997). But it faced a serious 

technical difficulty (which was acknowledged by the authors): the assumption was made 

that every operator is an integral operator, and therefore, Dirac’s problematic function had 

to be assumed. As a result, an entirely distinct account was required to introduce adequately 

probability in quantum mechanics. This provided additional support for the use of Hilbert 

spaces. 

At this point, the problem faced by von Neumann was clear: 

 

(1) How to provide a mathematically consistent and well-motivated formulation of 

quantum mechanics that explains why matrix and wave mechanics yield (basically) 

the same empirical results? 

 

In order to solve this problem, von Neumann found a problem that was essentially the 

same: 
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(2) Is there a mathematically consistent framework to formulate both matrix and wave 

mechanics, and one in which the equivalence between the two theories could be 

established?8 

 

By noting that the space of functions defined on the mathematical spaces that underlie 

matrix and wave mechanics are Hilbert spaces, and by noting that the latter yield a natural 

way of introducing probability in quantum mechanics, von Neumann found a way of 

solving problem (2). Thus, given (SP1)namely, the claim that essentially the same 

problems have essentially the same solutionsvon Neumann was able to solve problem 

(1). In fact, von Neumann’s construction provides a beautiful example of (SP1) at work. 

Moreover, von Neumann’s proof of the mathematical equivalence between matrix and 

wave mechanics also illustrates the context dependence and structure preservation of 

symmetry. Without identifying the right frameworkthe right contextto run the proof, it 

wouldn’t be possible to establish the equivalence result (as indicated by the unsuccessful 

attempts by Schrödinger and Dirac to prove the latter). And once the right context is 

determined, the equivalence proof is a matter of preserving the right structure, a matter of 

establishing the structural equivalencethe isomorphismbetween the relevant Hilbert 

spaces (see von Neumann 1932: 28-33). Ultimately, what von Neumann did was to use a 

transfer principle, bringing in structure from the theory of Hilbert spaces to provide a 

mathematically acceptable foundation for quantum mechanics. 

So, by 1927, quantum mechanics could be seen as a semi-coherent assemblage of 

principles and rules for applications. And von Neumann provided a systematic approach to 

overcome this situation. Around the same time, Weyl provided a different approach. His 

1931 book was an attempt to impose a degree of coherence via the introduction of group-

theoretic techniques.9 Weyl’s approach, similarly to von Neumann’s, was concerned with 

                                                 
8 Strictly speaking, von Neumann only proved the equivalence of the mathematical frameworks used to 
formulate wave and matrix mechanics. He disregarded the extra ontological assumptions made by each theory. 
For a discussion of this issue, see Muller (1997). 
9 Dirac’s 1930 work represents a further attempt to articulate a coherent basis for the theory. However, as von 
Neumann perceived, neither Dirac’s nor for that matter Weyl’s approaches offered a mathematical framework 
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foundational questions, although not exactly the same sort of questions. As Mackey points 

out (1993: 249), Weyl distinguished two questions in the foundations of quantum 

mechanics (see Weyl 1927): (a) How does one arrive at the self-adjoint operators that 

correspond to various concrete physical observables? (b) What is the physical significance 

of these operators, i.e. how are physical statements deduced from such operators? 

According to Weyl, (a) had not been adequately treated, and is a deeper question; whereas 

(b) was settled by von Neumann’s formulation of quantum mechanics in terms of Hilbert 

spaces. But to address (a), Weyl needed a different framework altogether: he needed group 

theory. 

According to Weyl, group theory “reveals the essential features which are not contingent 

on a special form of the dynamical laws nor on special assumptions concerning the forces 

involved” (1931: xxi). And he continues: 

 

Two groups, the group of rotations in 3-dimensional space and the permutation group, play 
here the principal role, for the laws governing the possible electronic configurations 
grouped about the stationary nucleus of an atom or an ion are spherically symmetric with 
respect to the nucleus, and since the various electrons of which the atom or ion is composed 
are identical, these possible configurations are invariant under a permutation of the 
individual electrons. (ibid.; italics omitted.) 

 

In particular, the theory of group representation by linear transformations, the 

“mathematically most important part” of group theory, is exactly what is “necessary for an 

adequate description of the quantum mechanical relations” (ibid.). As Weyl establishes, “all 

quantum numbers, with the exception of the so-called principal quantum number, are 

indices characterizing representations of groups” (ibid.; italics omitted). Moreover, as he 

shows, Heisenberg’s uncertainty relations and Pauli’s exclusion principle can be obtained 

via group theory (Mackey 1993, and French 2000). Given these considerations, Weyl’s 

conclusion is not at all surprising: “We may well expect that it is just this part of quantum 

                                                                                                                                                     
congenial for the introduction of probability at the most fundamental level, and (initially at least) this was one 
of the major motivations for the introduction of Hilbert spaces. 
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physics [the one formulated group-theoretically] which is most certain of a lasting place” 

(ibid.). 

Weyl is clearly concerned with the formulation and derivation of fundamental principles 

of quantum theory, including, as just noted, Heisenberg’s uncertainty relations and Pauli’s 

exclusion principle. So, the use of group theory he developed provides a clear case of 

symmetry in the laws. 

But it is not only in the foundations of quantum mechanics that group theory has a 

decisive role; it is also crucial for the application of quantum theory. Wigner, in particular, 

explored this role (see Wigner 1931). Here we find an important difference between Weyl’s 

and Wigner’s use of group-theoretic techniques in quantum mechanics (Mackey 1993, and 

French 2000). Weyl explored group theory at the foundational, indicating how to obtain 

group-theoretically quantum mechanical principles. Wigner, on the other hand, was 

particularly concerned with the application of quantum mechanicsthis is the main theme 

of his 1931 book. As he argues, we cannot apply the Schrödinger equation directly, but we 

need to introduce group-theoretic results to obtain the appropriate idealizations (French 

2000). In Wigner’s own words: 

 

The actual solution of quantum mechanical equations is, in general, so difficult that one 
obtains by direct calculation only crude approximations to the real solutions. It is 
gratifying, therefore, that a large part of the relevant results can be deduced by considering 
the fundamental symmetry operations. (Wigner 1931: v) 

 

In particular, group theory allows physicists to overcome the mathematical intractability of 

the many-body problem involved in a system with more than two electrons. In this way, via 

group theory, it is possible to relate quantum mechanics to the data (French 2000). We have 

here a clear case of symmetry in the solutions. Thus, group theory enters both at the 

foundational level and at the level of application. 

However, in order for the use of group theory to get off the ground, one has to adopt the 

prior reformulation of quantum mechanics in terms of Hilbert spaces. It is from the 

representation of the state of a quantum system in terms of Hilbert spaces that a group-

theoretic account of symmetric and antisymmetric states can be provided (Weyl 1931: 185-
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191).10 The group-theoretic approach also depends on the Hilbert space representation to 

introduce probability into quantum mechanics. Moreover, at the application level, despite 

the need for idealizations to apply quantum theory, the Schrödinger equation is still 

crucialputting constraints on the accepted phenomenological modelsand the 

representation of states of a quantum system in terms of Hilbert spaces has to be used. In 

other words, group theory is not an independent mathematical framework to articulate 

quantum mechanics: the Hilbert spaces representation is required. Roughly speaking, we 

can say that von Neumann’s Hilbert spaces representation is “sandwiched” between Weyl’s 

foundational use of group theory and Wigner’s application program. Hence, there is a close 

interdependence between group theory and Hilbert spaces theory in the proper formulation 

of quantum mechanics. 

The “sandwich” model highlights the close interconnection in quantum mechanics 

between the symmetries in the laws and the symmetries in the solutions. These two levels 

of symmetry are connected in two steps. First, the Hilbert space formalism links the 

symmetries in the laws explored by Weyl with the symmetries in the solutions that Wigner 

articulated. Second, von Neumann’s ingenious use of the symmetry principle (SP1) 

provides an additional connection between these two kinds of symmetry. After all, (SP1) is 

the sort of heuristic principle that guided so much of von Neumann’s work, shaping, in 

particular, the introduction of the Hilbert space formalism. In this way, by exploring (SP1), 

one can identify the mathematical framework that implements the first step. 

But the symmetry principle (SP2) also played a significant role in this story. After 

motivating and introducing the Hilbert space formalism in quantum mechanics, von 

Neumann was eventually dissatisfied with it. The trouble is that, on von Neumann’s view, 

                                                 
10 As French points out: “the fundamental relationship underpinning [some applications of group theory to 
quantum mechanics] is that which holds between the irreducible representations of the group and the 
subspaces of the Hilbert space representing the states of the system. In particular, if the irreducible 
representations are multi-dimensional then the appropriate Hamiltonian will have multiple eigenvalues which 
will split under the effect of the perturbation” (French 2000: 108). In this way, “under the action of the 
permutation group the Hilbert space of the system decomposes into mutually orthogonal subspaces 
corresponding to the irreducible representations of this group” (ibid.: 108-109; see also Mackey 1993: 242-
247). As French notes, of these representations “the most well known are the symmetric and antisymmetric, 
corresponding to Bose-Einstein and Fermi-Dirac statistics respectively, but others, corresponding to so-called 
‘parastatistics’ are also possible” (ibid.: 109). 
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the formalism didn’t allow the proper introduction of probability in the case of quantum 

systems with infinite degrees of freedom (see Rédei 1997). To provide an alternative 

framework that extended, in a unified way, his original approach to the case of infinite 

degrees of freedom, von Neumann used the symmetry principle (SP2): an asymmetry must 

always come from an asymmetry. Von Neumann realized that the logical structure of 

quantum mechanical systems with a finite number of degrees of freedom is a projective 

geometry, which is isomorphic to the projective geometry of all subspaces of a finite-

dimensional Hilbert space. But this is not the case of systems with an infinite number of 

degrees of freedom. To determine the logical structure of those infinite systems, von 

Neumann eventually provided a generalization of projective geometry, leading to what he 

called continuous geometry
11 (von Neumann 1960, and Bub 1981: 89-90). The asymmetry 

found in the case of the Hilbert space formalismthe fact that probability couldn’t be 

properly formulated in systems with an infinite number of degrees of freedomwas traced 

back to the limited geometric structure of Hilbert spaces, and a new, more general structure 

(von Neumann algebras) was devised. Again, symmetry principles, now in the form (SP2), 

have been crucial. 

 
 
4. The Nature of Symmetry Principles in Quantum Mechanics 

Given the considerations above, we can now address to the issue of the nature of symmetry 

principles in quantum mechanics. To examine the issue, I’ll consider three questions: (a) 

Are symmetry principles ontological? (Do they tell us something about the nature of the 

world?) (b) Are symmetry principles epistemological? (Do they tell us something about the 

nature of our knowledge of the world?) (c) Are symmetry principles methodological and 

heuristic only? (Are they useful to solve problems and provide guidelines for theory 

construction in physics?) I’ll answer questions (a) and (b) negatively; but question (c) will 

receive an emphatically positive answer. Of course, given the latter answer, it’s crucial to 

discuss the ontological and epistemological consequences of the heuristic nature of 

                                                 
11 We now call these structures von Neumann algebras of Hilbert space operators. 
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symmetry principles, and why the heuristic nature of these principles doesn’t undermine the 

answers given to questions (a) and (b). I’ll examine these issues in turn. 

 

4.1. Why symmetry principles are not ontological  

As we saw above, symmetry plays an undeniable role in the formulation of quantum 

mechanics.12 It’s natural enough to expect that symmetry considerations have both 

ontological and epistemological consequences. The strongest of these claims is, of course, 

the ontological one: the claim that symmetry considerations allow us to “carve nature at its 

joints”; that symmetry principles allow us to uncover the underlying regularities of nature. 

Here is the argument to this effect: If symmetry principles didn’t entail something 

substantially right about the workings of nature, it wouldn’t be possible to explain the 

success of empirical predictions based on symmetry considerations. And there’s no doubt 

that symmetry plays a major predictive role in quantum mechanics, underlying fundamental 

discoveries in particle physics, not to mention the crucial role that symmetry plays in the 

formulation and application of quantum theory (explored, respectively, by Weyl and 

Wigner). 

This is, of course, a version of the no-miracles argument, revamped to explain the 

success of symmetry considerations in physics (for the traditional version of the argument, 

see e.g. Putnam 1979). According to the no-miracles argument, the best explanation for the 

empirical success of scientific theories (their success in yielding right, novel predictions 

about the world) derives from the fact that these theories are true (or approximately so). In 

fact, the argument goes, it would be a miracle if our best scientific theories, despite making 

novel predictions,13 still turned out to be false. For how could such theories possibly make 

novel predictions without also being substantially right about the underlying causal 

                                                 
12 For further discussion of the role of symmetry in theory construction, see also van Fraassen (1989: 233-
289), van Fraassen (1991: 21-76, 177-184), and Ismael and van Fraassen (2003). 
13 These are predictions of phenomena the theory was not originally constructed to make. 
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mechanisms and properties they identify in the world? In other words, it would be a miracle 

if novel predictions were made by false theories. Or so goes the argument.14 

The no-miracles argument bears an important connection with another contentious 

argument, now in the philosophy of mathematics: the indispensability argument (see Quine 

1960, Putnam 1979, and for a thorough discussion, Colyvan 2001). According to the 

indispensability argument: 

 

(P1) We ought to have ontological commitment to all and only those entities that are 

indispensable to our best scientific theories. 

(P2) Mathematical entities are indispensable to our best scientific theories. 

(C) We ought to have ontological commitment to mathematical entities.15 

 

The indispensability argument provides reason to believe in the existence of mathematical 

objects for those who have reason to believe in the entities that are indispensable to our best 

scientific theoriestypically, scientific realists are in this category. The no-miracles 

argument, in turn, provides an indirect argument for scientific realism itself, given that it 

shows that realism explains the empirical success of scientific theories. In this way, the no-

miracles argument can be viewed as giving reason to believe in the existence of 

unobservable entities in science. The indispensability argument then extends this belief to 

unobservable mathematical entities. Thus, the two arguments work together to reinforce 

and expand the commitment to realism, justifying the claim that we have reason to believe 

in unobservable entities, whether they are concerned with mathematical or physical 

domains. 

                                                 
14 I’m simplifying things here. According to John Worrall, the no-miracles argument shouldn’t even be 
constructed as a deductive argument for scientific realism (see Worrall 1989). The argument provides, at best, 
indirect evidence for realism, given that it indicates how realism manages to explain the predictive success of 
scientific theories. But, for the purposes of the current discussion, there’s no need to enter into the intricacies 
of this issue here. 
15 I’m following here the version of the argument presented in Colyvan (2001: 11). There is an unanalyzed 
modal locution (“ought”) in (P1) and (C), but the argument can be reformulated without this modal idiom. 
Given that nothing hangs on this, I’ll stick to Colyvan’s formulation. 
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Now, as we saw above, symmetry is a mathematical property (ultimately, it’s a matter of 

structure preservation), but it also has important empirical consequences, as the quantum 

mechanics case beautifully illustrates. So, to be able to get ontological conclusions from the 

successful use of symmetry in physics, something like the indispensability argument and the 

no-miracles argument need to be in place. After all, without something like these 

arguments, it’s not at all clear how we can justify the claim that we ought to be committed 

to the results based on symmetry considerations. Consider, for instance, the case of an anti-

realist about such symmetry principles. This would be someone who asserts that the use of 

symmetry principles is just part of an empirically adequate (but not true) theoretical 

package. Hence, the truth of the results that are obtained via these principles is never 

assertedparticularly the results dealing with unobservable outcomes. A more robust 

strategy to justify an ontological reading of symmetry principles is therefore needed. 

In terms of the two arguments for realism just discussed, it’s easy to mount an 

ontological justification for the use of symmetry principles. Consider the following 

indispensability argument: 

 

(P1′) We ought to have ontological commitment to all and only those entities and 

principles that are indispensable to our best scientific theories. 

(P2′) Symmetry principles are indispensable to one of our best scientific theories 

(namely, quantum mechanics). 

(C′) We ought to have ontological commitment to symmetry principles. 

 

In (P2′), the sense in which symmetry principles are indispensable should be clear enough. 

As indicated above, the formulation and application of quantum mechanics seem to require 

such principles. And so, quantum theory, as we know it, couldn’t even get off the ground 

without symmetry considerations. Hence, it’s concluded that we ought to have ontological 

commitment to the latter. 

Similarly, a no-miracles argument to the effect that the best explanation as to why 

symmetry principles are so successful in quantum mechanics could be articulated as well. 
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The central point of this argument highlights the fact that by adopting the ontological 

reading of symmetry principles in quantum mechanics one can explain why such principles 

are so successful. And there’s no doubt that the principles are indeed successful. 

Given the fact that the indispensability and the no-miracles arguments are invoked by the 

ontological reading of symmetry principles, by resisting the former two arguments, it’s 

possible to resist the ontological conclusion from symmetry principles as well. From the 

discussion above, it’s also clear that the no-miracles argument and the indispensability 

argument have similar patterns. Thus, they also receive similar responses.16 And by 

providing these responses, it’s possible to undermine the claim that symmetry principles 

have an ontological import. After all, the claim that they have such an import presupposes a 

style of argumentthe indispensability and the no-miracles argumentsthat ultimately 

doesn’t support the conclusion. Let’s see why this is the case. 

The main problem faced by both the no-miracles argument and the indispensability 

argument is that they assume that the evidence supports equally well all the components of 

a theory. And so, in the case of the indispensability argument, it’s assumed that the 

evidence that supports the conceptual machinery of a given theory also supports the 

unobservable mathematical entities used to formulate the theory. In the case of the no-

miracles argument, it’s assumed that all the theoretical components of a scientific theory 

receive indiscriminately the same support from the evidence, which is required to explain 

the success of the theory given the available evidence. But, in both cases, the assumption is 

false. 

As it has been frequently pointed out, scientific theories don’t receive indiscriminate 

support to all of their parts. There are components of a theorysuch as idealizations and 

mathematical termsthat play no causal role in the description of the phenomena, and so 

are not taken to receive any support from the evidence (see, e.g., Maddy 1997: 133-160). As 

a result, these “idle” components cannot be claimed to have ontological significance. But 

are symmetry principles among the “idle” parts of a theory? 

                                                 
16 Here is a heuristic use of a meta-symmetry principle! 
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It’s hard to argue that they are. After all, symmetry principles do play a role. But it’s far 

from clear that this role warrants the conclusion that symmetry principles are ontologically 

significant. After all, to help the formulation of quantum theory, or to help to get certain 

solutions from the Schrödinger equation, are pragmatic uses of the relevant mathematics. 

Why should these uses have any ontological significance? The fact that a theory allows us 

to express certain relations is not sufficient to guarantee that the theory is true. Fictional 

discourse allows us to express various relations without any such ontological implications 

(see Bueno 2005, and Azzouni 2004). As a result, the first premise of the indispensability 

argument, (P1), as well as the first premise of the argument for the ontological reading of 

symmetry principles, (P1′), are not true in general, and should be rejected. Even granting 

that symmetry principles are indispensable to quantum mechanics, it doesn’t follow that we 

ought to be ontologically committed to them. Symmetry principles provide useful devices 

to describe the foundations of quantum mechanics and to obtain solutions to quantum 

mechanical equations. But these features alone license no ontological conclusion about 

what is going on in nature. (Exactly the same point applies to the no-miracles argument.) 

Moreover, even though symmetry principles can be separated from other components of 

a theory, they never work in complete isolation. So, no ontological credit can be assigned to 

symmetry alone. This is the topic of the next section. 

 

4.2. Why symmetry principles are not epistemological  

If symmetry principles don’t necessarily have an ontological character, is their nature purely 

epistemological? That is, can we say that symmetry principles provide, at best, 

epistemological guidelinesguidelines to increase our knowledge of the world? In a 

fascinating study, Kosso (2000a) argues that symmetry principles do have an 

epistemological character, but their epistemology is in no way notable. In particular, an 

important use of symmetry principles in physicsthe case of spontaneously broken 

symmetriesdoesn’t introduce any new epistemological issue. As Kosso points out: 
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The epistemology of the cases of spontaneously broken symmetry presented here, even the 
esoteric case of the electroweak gauge theory, ends up as rather basic, meat-and-potatoes 
scientific method. An argument by analogy is used to suggest the hypothesis, but the 
analogy is not of much epistemic value. Rather, it is the subsequent hypothetico-deductive 
testing that serves as the source of justification. The credibility comes from the success of 
precise and novel prediction. (Kosso 2000a: 374) 

 

What happens is that symmetry principles are added to empirical assumptions about a given 

domain. As a result, the use of these principles is substantially constrained by empirical 

considerations made in the domain in question. In other words, symmetry principles are 

assessed in a package together with the relevant empirical information. Thus, the 

application of symmetry principles alone cannot raise any special sort of epistemological 

issue. The whole package of physical principles, auxiliary hypotheses, initial conditions, 

and symmetry principles is used to obtain the intended predictions. Credit or blame needs to 

be assigned to the package as a whole.17 

Even though Kosso doesn’t present the point in the way I just did, he is exactly right in 

making his point. Symmetry principles need to be assessed in a broader contextwe need 

more than symmetry considerations alone to get any interesting predictions. 

Despite this fact, there seems to be something peculiar about symmetry principles: their 

deceptively a priori appearance. In fact, in Weyl’s view, “all a priori statements in physics 

have their origin in symmetry” (Weyl 1952: 126).18 For Weyl, these a priori statements are 

quite limited, though. He mentions two very simple examples: the conclusion that 

Archimedes draw, based on a priori considerations, that “equal weights balance in scales of 

equal arms”;19 and the case of casting dice that are perfect cubes, where we can be sure that, 

                                                 
17 For simplicity, I’ve been describing the theoretical situation in terms of the traditional “syntactic” picture of 
theories. But essentially the same description could be obtained emphasizing the modeling process (following 
the “semantic” approach), where the “syntactic” description given above would be formulated in terms of 
restrictions in the relevant models. For example, the initial conditions force one to consider only models in 
which certain situations are satisfied (see van Fraassen 1989: 217-232, van Fraassen 1991: 1-17, 24-33, and 
Hughes 1989: 79-82). 
18 Kosso (2000b) provides a captivating discussion of the issue raised by Weyl. 
19 In fact, as Weyl points out, “the whole configuration is symmetric with respect to the midplane of the scales, 
and therefore it is impossible that one mounts while the other sinks” (Weyl 1952: 125). 
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due to the symmetry of the situation, “each side has the same chance, 1/6” (Weyl 1952: 

125-126). But these results don’t hold in general: 

 

Sometimes we are […] enabled to make predictions a priori on account of symmetry for 
special cases, while the general case, as for instance the law of equilibrium for scales with 
arms with different lengths, can only be settled by experience or by physical principles 
ultimately based on experience. (Weyl 1952: 126; italics added.) 

 

Weyl’s conclusion in the general case conforms to the point made in the discussion of 

quantum mechanics above. As we saw, the use of symmetry emerges in a context 

dominated by empirical considerationsin particular, by all the relevant physical principles 

of the theory. Whether we are considering symmetries in the laws or symmetries in the 

solutions, additional physical principles are always found: from the need to find certain 

solutions to the Schrödinger equation to von Neumann’s way of introducing probability in 

quantum mechanics. And so, symmetry principles are not operating in an empirical 

vacuum, as it were. 

Van Fraassen presents the point very elegantly: 

 

Once a problem is modelled, the symmetry requirement may give it a unique, or at least 
greatly constrained solution. The modelling, however, involves substantive assumptions: an 
implicit selection of certain parameters as alone relevant, and a tacit assumption of 
structure in the parameter space. Whenever the consequent limitations are ignored, 
paradoxes bring us back to our sensessymmetries respected in one modelling of the 
problem entail symmetries broken in another model. As soon as we took the first step, 
symmetries swept us along in a powerful currentbut nature might have demanded a 
different first step, or embarkation in a different stream. (van Fraassen 1989: 317) 

 

The point is important, and van Fraassen had already reached the same conclusion in an 

earlier discussion: 

 

We [can] exploit symmetries only after deliberate choice of a modeland then the 
symmetry carrie[s] us swiftly to the endbut that initial choice has no a priori guarantee of 
adequacy. 

Symmetry arguments have that lovely air of the a priori, flattering what William James 
called the sentiment of rationality. And they are a priori, and powerful; but they carry us 
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forward from an initial position of empirical risk, to a final point with exactly the same 
risk. The degree of empirical fallibility remains invariant. (van Fraassen 1989: 260-261) 

 

In other words, even if symmetry principles were a priori, the fact that they ultimately 

depend on empirical considerations highlights their ultimate fallibility. 

Where does this leave us with regard to the issue of the epistemological nature of 

symmetry principles? One way in which symmetry principles could have an 

epistemological nature is by establishing that they are a priori. After all, a priority is a 

thoroughly epistemological notion. Weyl characterized the issue exactly in that way. In his 

view, the conclusions he reached about symmetryboth the general and the special cases 

discussed a few paragraphs aboveare epistemological. And, indeed, that’s what the 

conclusions are. The problem is that this still leaves the issue quite open. After all, as Weyl 

himself acknowledged and van Fraassen emphasized, in order to apply a symmetry 

principle, it’s crucial first to model the intended situation, and in setting up the model, 

various empirical assumptions need to be introduced. As a result, we cannot claim in 

general that the use of symmetry principles is simply a priori. Even if the principles were a 

priori, it would be misleading to leave the issue at that, given the need for additional 

empirical information for symmetries to get actually off the ground. Given the need for the 

broader context to get symmetry principles going in physics, the use of these principles isn’t 

purely an epistemological matter after all. 

 

4.3. Why symmetry principles are methodological and heuristic  

If the nature of symmetry principles isn’t purely epistemological or ontological, what is it? 

Briefly, the nature of symmetry principles is ultimately methodological and heuristic. As we 

saw above, symmetryin the form of group-theoretic techniquesplays two crucial roles 

in quantum mechanics: (a) It provides crucial tools for the foundations of quantum theory 

(this is the upshot of seeing Weyl’s program as a case of symmetry in the laws). And (b) 

symmetry is crucial for the solution of the Schrödinger equation (and here we looked at 

Wigner’s approach as a case of symmetry in the solutions). In both circumstances, 

symmetry is never used alone, but it depends on additional empirical and conceptual 
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resourcesin particular, as we saw, the Hilbert space formalism is required for both (a) and 

(b). All of these outcomes are clearly methodological and heuristic: (a) increases our ability 

to understand and formulate quantum theory, whereas (b) helps us solve problems using the 

resulting formalism. 

It might be argued that helping to improve the formulation of the theory and to solve 

equations are indeed important roles that group theory plays in quantum mechanics. In fact, 

the argument goes, these roles are so important that we need to reify them, and claim that 

they provide reasons to believe in the existence of the corresponding objects (symmetries, 

vectors in Hilbert spaces, probability functions etc.). The case for the indispensability and 

the no-miracles arguments for symmetry principles, discussed above, rested exactly on this 

move. 

However, are these roles really indispensable? Even if they were, it doesn’t follow that 

we need to believe in the existence of unobservable entities (whether they are mathematical 

or physical). After all, as we noted, solving equations and understanding a theory are 

ultimately pragmatic features of our use of that theory. These features are in no obligation 

of telling us anything substantive about the world. As such, they don’t require commitment 

to the existence of the entities denoted by the theory under consideration. And so, once 

again, there is no need toand we should notreify the description provided by symmetry 

principles. Ultimately, their role is methodological and heuristic. 

 

4.4. Ontological and epistemological consequences of symmetry principles?  

Even if the nature of symmetry principles has to do with heuristics and methodology, the 

point still stands that these principles seem to have ontological and epistemological 

consequences. In particular, new particles have been discovered based on symmetry 

considerations. Doesn’t this undermine the claim that the nature of symmetry principles is 

only methodological and heuristic? 

I don’t think so. As indicated above, the whole package of physical principles, auxiliary 

hypotheses, initial conditions, and symmetry principles is used to draw empirical 

consequences. In isolation, symmetry principles are completely silent. So, strictly speaking, 
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it’s misleading to say that symmetry principles have ontological or epistemological 

consequences. The consequences that follow from the symmetries are actually 

consequences of much broader theoretical packages. Moreover, as discussed above, to draw 

ontological conclusions from symmetry principles, something like the indispensability and 

the no-miracles arguments is required. But, as we saw, these styles of argument fail to 

establish the intended conclusion. As a result, we should resist the temptation of reading too 

much into the symmetries alone. 

 
 
5. Conclusion 

Much more could (and should) be said about the nature of symmetry principles in physics; 

in particular, by extending the discussion simply sketched here beyond quantum mechanics. 

But I hope enough was said to motivate the claim that whatever use symmetry principles 

might be put to, there is no needand no justificationto draw ontological conclusions 

from them alone. 

As any type of principle in physics, symmetry principles are fallible and contingent. 

They presuppose empirical assumptions about the domain to which they are applied, and 

they are no more secure than the assumptions on which they rest. Symmetry principles are 

elegant, ingenious, inventive. But their beauty alone, as the beauty of any other physical 

principle, is never enough to give us reason to conclude anything beyond the fact that these 

are methodological principles. Symmetry principles are useful, important, perhaps even 

indispensable tools for theory construction. But they are nothing more than that. 
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