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Like Glenn Shafer, we are nostalgic for the time when “philosophers, mathematicians, and 

scientists interested in probability, induction, and scientific methodology talked with each 

other more than they do now”, [p.10].
1
 Shafer goes on to mention other relevant 

contemporary communities. He himself has been at the interface of many of these 

communities while at the same time making major contributions to them (e.g., Shafer 1976, 

1996; Shafer and Vovk 2001; Vovk, Ammerman, and Shafer 2005) and this very 

symposium represents something of that desired discussion. 

We begin with a couple of general points about issues several commentators have 

raised and then discuss other more particular issues. 

 

1. General Remarks 

Scope 

Shafer asks skeptically how statistical learning theory might provide advice to jurors trying 

to decide on the guilt or innocence of someone on trial. Thagard suggests that inference to 

the best explanation does not always fit the conditions of statistical learning theory. He 

worries that restricting scientific reasoning to those conditions would yield behaviorism in 

psychology. And he stresses that “the goals of inductive inference include understanding as 

well as reliability”, [p.21]. Similarly, Strevens wonders how the acceptance of Newtonian 

physics could be explained using statistical learning theory. And Hanson points out that 

learning to make predictions does not necessarily allow deeper explanations of hidden 

principles. 

These comments indicate a serious error in our exposition. We did not intend to 

suggest that statistical learning theory provides a complete theory of inductive reasoning or 

                                                      
1
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Response    48     

 

a general “theory of empirical inquiry in science.” We think it is an interesting part of such 

a general theory, but we do not think it is the whole thing. 

Our reason for concentrating on basic statistical learning theory is that it is a 

relatively a priori subject, allowing mathematical proofs of interesting results. In this sense, 

it speaks to interest in the traditional philosophical problem of induction: what can we show 

a priori about induction?  It would be lovely to have similar results for other cases. 

 

Transduction 

Shafer and Thagard interpret “transduction” differently from the way we use the term 

(based on our understanding of Vapnik’s use). Shafer counts all cases of “on-line 

prediction” as instances of transduction. To say that the prediction is on-line is to say that 

data are used to make a prediction about a new case, then, once it is known what the actual 

value of the new case is, that information is added to the data and the augmented data are 

used to make a prediction about a second new case, etc.2  (An alternative is to use data to 

come up with a rule that is used to make predictions about various new cases as they come 

up without further changes in the rule.) But, as we use the term “transduction” (following 

Vapnik), it does not suppose we learn the actual value of the new cases. All we learn is that 

certain new cases have come up to be assessed (Harman and Kulkarni, 2007, pp. 89-95). 

Thagard notes that “transduction uses information about what new cases have come 

up in its classification of them” [p.22] but argues that “the aspect of transductive inference 

that it goes from cases to cases without intervening rules has a strong place in psychology 

as well as philosophy”, [p.24]. He mentions cases of “direct inference” as discussed by 

Mill, Russell, and other philosophers. He also includes under this heading the sort of 

analogical inference discussed in Holyoak and Thagard (1995), exemplar theories of 

concepts, and inferences modeled by neural networks. But it is unclear that his examples 

are cases without “intervening rules.” For example, a fixed feed-forward neural network 

defines a function from input features to a classification. That function specifies a rule 

associated with that network. Similarly, an exemplar model of a concept in the form of a 

                                                      
2
 On-line prediction allows for the game-theoretic approach described in Shafer and Vovk (2001). 
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nearest neighbor model of classification defines a function or rule from input features to a 

classification associated with the concept. 

 

2. Further Response to Glenn Shafer 

Shafer notes that the theory we discuss derives from “The work of Vapnik and 

Chervonenkis” which “is only a tiny part of the vast literature on probability and prediction 

that is relevant to philosophy’s questions about induction and reliable reasoning”, [p.11]. 

We think it is a part worth knowing about that also is, for example, not well known in 

philosophy. We agree, of course, that there are many other developments in probability and 

prediction that are worth knowing about, for example Shafer and Vovk’s (2001) surprising 

demonstration that game theory can provide a basis for statistical reasoning without the 

assumptions needed for basic statistical learning theory. 

Shafer observes that the basic statistical learning theory we discuss assumes that 

“observations are independently and identically distributed”, [p.11]. He notes that this 

assumption can often be replaced by assuming that they are exchangeable. But he asks “Are 

there really many applications where [this] assumption is reasonable?” [p.11]. Our answer 

is that there are at least some real life situations in which this assumption leads to some 

useful applications of the basic theory, e.g. the post office problem of learning to recognize 

handwriten zip codes, even though Vovk, Gammerman, and Shafer (2005) say this is now 

considered a “toy problem”, (p. 3). 

Shafer also says, “By 1960, Jerzy Neyman could declare that science had become 

the study of stochastic processes. ...[E]very serious study in science was a study of some 

evolutionary chance mechanism”, [p.12]. We agree that conditions change over time. If the 

change is slow enough, the basic theory works well enough. Shafer observes that good 

results in practice are possible even when the assumptions of the basic case are not met. 

Much of the basic theory has extensions to various types of stochastic processes, notably 

those with suitable mixing conditions. 

We think it is pedogically useful to start with the basic theory and later consider 

extensions to other cases. Furthermore, as Shafer observes, the assumption can be 
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weakened in various ways. We also believe that many cases in which philosophers appeal 

to the reliability of certain epistemic methods are cases that approximate the conditions of 

the basic theory. 

Shafer says, “If I were to fault Harman and Kulkarni on one point, it is that they do 

not dwell on the experimentation and reasoning that goes into choosing the kernel” (for a 

support vector machine), [p.14]. Certainly this is an important practical issue. The choice of 

representation of features and decision rules is crucial for a learning task, but this is much 

more an art than a science. 

Finally, Shafer wonders what illumination research in machine learning might 

provide about the situation of a juror in a trial. We mentioned research about jurors (based 

on Thagard’s models of their reasoning) in order to indicate (a) that a juror typically 

reasons by making mutual adjustments in his or her beliefs in a way that aims at reaching a 

kind of reflective equilibrium and (b) that this method is quite fragile in a way that makes it 

relatively unreliable. Can statistical learning theory suggest ways of judging the reliability 

of jury verdicts or ways of improving the reliability of verdicts?  

We see two possible difficulties here. First, in order to apply statistical learning 

theory, we would need to have data as to which verdicts are correct, we need labeled 

examples. Perhaps we could have experienced judges provide these labels?  

Second, it is legally problematic to use statistical reasoning to decide on guilt or 

innocence at a trial (Tribe, 1971), even though such reasoning might be useful in a different 

context. 

In any event, we repeat that we do not think that all induction is capturable in 

statistical learning theory or other machine learning approaches known to us. 

 

3. Further Response to Paul Thagard 

Thagard says, “Harman and Kulkarni erroneously extrapolate from my enthusiasm for 

coherence-based approaches to many kinds of inference that I endorse an approach to 

metanormativity akin to reflective equilibrium”, [p.19]. We apologize for having given this 
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impression. We did not mean to suggest that Thagard endorsed this approach. And we like 

his account of his own “decision procedure for metanormativity”. 

Thagard worries that “emphasis on reliability alone would restrict us to a kind of 

behaviorism ...But people cannot resist attributing mental states to each other, going beyond 

behavior to infer that people have various beliefs, desires, and emotions that cause their 

behavior”, [p.21]. Perhaps he is thinking that the data available to the statistical learner 

must consist entirely in relations among observable features, so that there can be no 

statistical learning of how to classify someone’s psychological states on the basis of 

observable features. But data include feature vectors plus labels. The labels typically 

represent relatively unobservable properties. For example, they might be characterizations 

of psychological states. The labels on the data items might be provided by “experts” (e.g., 

people in those states). 

Thagard argues that “the goals of inductive inference include understanding as well 

as reliability”, [p.21]. How might that idea figure in statistical learning theory?  Of course, 

statistical learning theory can allow for values beyond getting answers that are correct 

rather than incorrect. It can allow that some errors are worse than others, for example, so 

that the goal is to minimize expected cost rather than just to minimize expected error. 

Furthermore, the goal of achieving understanding might be in part reflected in an inductive 

bias that favors some classification rules rather than others. Empirical risk minimization 

chooses from a limited set C a rule that minimizes error cost on the empirical data; and the 

choice of the limited set C may reflect the goal of coming up with a rule that provides 

understanding. Similarly, structural risk minimization chooses a rule that balances 

empirical cost against something else, using an ordering of hypotheses that may reflect the 

potential understanding they might provide. 

However, as we noted above, we do not mean to suggest that statistical learning 

theory provides a general account of inductive inference. 
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4. Further Response to Michael Strevens 

Strevens compares the statistical learning theory that we discuss in Reliable Reasoning to 

the “formal learning theory” (FLT) developed by Putnam (1963) and Kelly (1996). (See 

also Jain et al., 1999; Reichenbach, 1949; Kulkarni and Tse, 1994, and Schulte, 2008.) 

However, statistical learning theory and FLT are concerned with quite different matters. 

FLT is a theory of long term learning in the limit; given a potentially infinite stream of data, 

the task is either to arrive at a hypothesis about the stream that is eventually correct, or to 

approach a correct hypothesis in the limit. Statistical learning theory is a theory whose goal 

might be learning to how to characterize certain items. Given data and a minimal 

assumption about the objective probability distribution of items with various features and 

labels, the task is to assign labels to next items that turn up hoping to minimize (costs of) 

errors.3  FLT is concerned with coming up with a hypothesis about an infinite data stream, 

statistical learning theory is not. Statistical learning theory is concerned with coming up 

with a hypothesis about the next items. FLT is not. Statistical learning theory assumes there 

is an unknown background probability distribution of a certain sort; FLT makes no such 

assumption. Statistical learning theory is appropriate for machine learning, for example to 

recognize zip codes from handwriting on envelopes; FLT is not. 

Strevens takes both FLT and statistical learning theory as examples of 

“philosophical learning theory” and says, “Philosophical learning theory’s pessimism lies 

in the insistence that the best inductive methods are those that minimize, and if possible 

eliminate, the possibility of failure, no matter how unlikely the failure might be”, [p.28]. 

This is just not true of statistical learning theory, a mathematical subject that refrains from 

making any general claim about what inductive methods are best. 

To be sure, in our discussion of statistical learning theory in Reliable Reasoning we 

describe theorems that apply in the worst case, no matter what the underlying background 

objective probability distribution may be. But that is not to endorse “pessimism.” In 

addition, there is no assumption that all inductive inference fits the paradigm for statistical 

                                                      
3
 Statistical learning theory can be applied to other issues too, such as function estimation, although in 

Reliable Reasoning we mainly discuss learning categorization. 
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learning theory. As we have emphasized already, statistical learning theory is not intended 

as a general “theory of empirical inquiry in science.” 

Furthermore, even if when the basic statistical learning theory paradigm holds, one 

may have reason to make additional assumptions about the background objective 

probability distribution that go beyond or otherwise modify the assumptions of basic 

statistical learning theory. 

Strevens wonders, “How, then, to regard whatever hypothesis is recommended by 

the learning theorist at any time?  ...What, then, should philosophers of science take away 

from all this?  That the idea of evidential support in science is a fallacy?” [pp.31-2]. Our 

answer is that a given learning method offers an account of one kind of evidential support. 

Suppose that the relevant learning method is empirical risk minimization (enumerative 

induction). Given data, this method recommends a classification rule. Given features of a 

new case, the classification rule recommends a particular classification of that case. So, the 

learning data plus the features of the new case provide evidential support for that 

classification. 

Strevens refers to “the idea that Vapnik and Chervonenkis’s theory supplies, in its 

notion of the VC dimension of a set of inductive rules, an interesting surrogate for 

simplicity in scientific reasoning” [p.32] and later says, “Harman and Kulkarni imply that 

VC dimension provides a good approximation for, perhaps even a good account of, 

simplicity in at least some parts of science”, [p.35]. But following Vapnik, we prefer to 

think of VC dimension as providing an alternative to simplicity in some scientific 

reasoning (for reasons we explain on pp. 69-73). 

Strevens takes VC dimension to have something to do with “wiggle room” and, 

thinking of points in the xy plane, says, “while most cubic polynomials will come nowhere 

near fitting a set of four data points, there is sure to be some cubic that fits them exactly, 

that is, some choice of parameters that delivers a cubic that gets everything exactly right”, 

[p.33]. This is too strong. There is a possibility that two of the four data points have the 

same x value but different y values, which would rule out any function f(x)=y that captures 

those points. 
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5. Further Response to Stephen Hanson 

Our intention in writing Reliable Reasoning was to suggest that basic statistical learning 

theory provides one sort of response to the traditional philosophical problem of induction, 

which asks what can be shown a priori about induction—especially that part of basic 

statistical learning theory concerned with worse case results. Our focus is on this 

philosophical use of this aspect of statistical learning theory rather than on any particular 

technique per se. 

As Stephen Hanson points out, many people studying computational learning have 

been less interested in this philosophical use of the theory than in developing practical 

systems that actually learn useful things. As he indicates, starting in the 1950s, attempts 

were made to develop learning systems by trying to simulate learning by reasoning that 

follows explicit principles of propositional logic. Such learning was modeled by production 

systems and other “artificial intelligence” approaches. Alas, as Hanson explains, this 

approach resulted in fragile systems that could be applied only to small toy problems. By 

the mid 1980s attention shifted to learning in neural networks, involving systems that were 

less fragile and less limited in problem size. Since then various new theoretical ideas have 

influenced the practice of those interested in developing systems that actually learn, ideas 

such as support vector machines (which we say a little about in Reliable Reasoning) or 

“boosting,” (which we do not discuss). 

As Hanson observes, many of the new methods may do relatively well in learning to 

make predictions at the cost of not allowing deeper explanations of what is going on—

explanations involving hidden principles (if there are any). There is an interesting 

methodological issue here concerning when it is useful to try to discover underlying 

principles and when it is better to go ahead with methods that give good predictions without 

uncovering such principles. But we cannot discuss that issue here. 

Hanson takes it to be unlikely that support vector machines provide insights into 

animal or human cognition, something we briefly discuss in Reliable Reasoning. We think 

it is premature to rule this out. He also takes us to be overly “romantic” [p.45] about 

support vector machines. We are not clear why he says that. We discuss support vector 

machines as one approach of many without any implication that it is the only or best 
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learning method or the one we are endorsing. Our focus is on how this and other learning 

techniques (including many that we do not discuss) illustrate principles of basic statistical 

learning theory that have something of value to contribute to discussions of the 

philosophical problem of induction. 
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