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REMARKS ON HARMAN AND KULKARNI’S “RELIABLE REASONING” 

 

Michael Strevens 

 

 

 

Reliable Reasoning is a simple, accessible, beautifully explained introduction to Vapnik 

and Chervonenkis’s statistical learning theory. It includes a modest discussion of the 

application of the theory to the philosophy of induction; the purpose of these remarks is to 

say something more. 

 

1. A Patient Pessimist’s Guide to Induction  

Philosophical Learning Theory 

Vapnik and Chervonenkis’s statistical learning theory may be compared to formal learning 

theory, familiar to philosophers from the work of Putnam (1963) and Kelly (1996). There 

are significant technical differences between the two theories, but considered as 

philosophical frameworks for thinking about inductive reasoning, they have much in 

common. I will say that they are both—in their epistemological incarnations—species of 

philosophical learning theory. 

The programmatic goal of formal learning theory is to investigate methods for 

learning from experience that are guaranteed to converge on the truth. (or at least 

guaranteed to come as close as possible) under some given set of circumstances. If you 

have a method that is sure to converge, the thought goes, then provided that the particular 

circumstances within which the guarantee is offered actually hold, you are sure to find the 

truth—eventually. The problem of induction is in that case solved. Or at least, a problem of 

induction is solved, since different methods may be recommended in different 

circumstances. 

Statistical learning theory takes a similar approach; the most important difference 

for philosophical purposes is that, assuming as it does that we live in an inherently 

stochastic world, it does not pursue convergence per se but a kind (or several kinds) of 

probabilistic convergence. Rather than providing a guarantee of convergence on the truth, it 
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will provide, where it can, a probability of finding the truth or something close to the truth 

that converges to one, so that in the limit the probability of failing to find the truth is zero. 

For brevity’s sake, I will use the term convergence in what follows to mean either true 

convergence or probabilistic convergence (in all its varieties); none of what I want to say 

turns on the distinction. 

It is this approach to justifying induction by finding guarantees of long run 

convergence that I refer to as philosophical learning theory, or PLT.
1
 Philosophical learning 

theory’s approach to inductive reasoning manifests an interesting mix of daring and 

pessimism, which I will discuss in the remainder of this section. As you will see, Harman 

and Kulkarni do not advocate these tenets of PLT explicitly; you may think of what follows 

as an interpretation and an extrapolation of their philosophical hopes for statistical learning 

theory, intended to draw them out. 

Pessimism 

Philosophical learning theory’s pessimism lies in the insistence that the best inductive 

methods are those that minimize, and if possible eliminate, the possibility of failure, no 

matter how unlikely the failure might be. Given a method that converges quickly on the 

truth in almost every world but misses it altogether in some, and a method that always 

learns the truth but only very slowly, the PLT theorist by temperament prefers the latter, in 

order to deal with the kind of Humean skeptical worries that must be overcome to vindicate 

induction.
2
 This predilection for safety is very much in evidence in Harman and Kulkarni’s 

book: they are interested in methods that are guaranteed to converge (probabilistically) on 

the truth in any kind of world whatsoever, provided only that the world contains something 

                                                 
1
 Even the convergentist strand of Bayesian confirmation theory is by this criterion a kind of PLT—though 

Bayesians also have many non-learning theoretic tricks up their sleeves. 
2
 That said, the tools provided by statistical and formal learning theory may be of considerable help to a 

learner with the former preference. Likewise, they may be useful given goals other than finding the truth, 

including goals that care about a mix of truth and other properties; as formal methods, they are not 

constrained by philosophical ideology. 
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appropriate to converge on, in the form of a (possibly stochastic) regularity linking the 

phenomena under examination.
3 

To give you a sense of where this caution might lead, consider a method discussed 

by Harman and Kulkarni that has some particularly desirable properties from their learning-

theoretic point of view, the nearest-neighbor rule. To make a prediction about a new data 

point, the nearest-neighbor rule polls a certain number of existing data points that are most 

similar to the new point in known respects; it then predicts that the as-yet-unknown features 

of the new data point will take on values similar to their values in these nearest neighbors. 

For example, to predict the fitness (in a given environment) of a newly discovered variant 

of some bacterium, you might look at the known variants of the organism most similar to 

the new variant and use the mean of their fitnesses in the environment as an estimate. 

As a quick-and-dirty heuristic to be employed when there is no deeper theoretical 

understanding available, this seems quite unobjectionable. But if PLT is to be taken 

seriously as a theory of empirical enquiry in science, then it should be understood as 

delivering not just heuristics but final theories. So we have to consider the possibility of a 

science that has, as its core theoretical posit, a nearest-neighbor rule. What would such a 

science look like? Rather than being centered on a few simple, far-reaching laws of nature, 

or a small set of general schemas for building (say) causal models of a wide range of 

phenomena, or even a large number of phenomenological generalizations, this science 

would have at its heart nothing more than an enormous and ever-growing data bank. 

Predictions would be made solely by consulting the information in this data bank. 

That such a method might be recommended to science is a sign of the powerful 

conservativism—perhaps a better word would be paranoia—that orients one axis of 

philosophical learning theory: above all, says PLT, do not allow Nature to take you by 

surprise. 

You might wonder—I certainly do—whether Harman, a long-time defender of 

inference to the best explanation, can reasonably be regarded as advocating this sort of 

                                                 
3
 To suppose the existence of such a regularity is to suppose a certain kind of uniformity in nature—though 

even given such an assumption a version of the problem of induction can be posed, as Harman and Kulkarni 

show in §3.8. 
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extreme empirical caution. But Reliable Reasoning is quite coy when it comes to such 

questions. It tenders statistical learning theory as a topic of interest to philosophers, but it 

does not develop to any degree the philosophical application of the theory as I have here. I 

am eager to learn more. 

Daring 

Philosophical learning theorists are not simply, in the face of Nature’s awesome variety, 

pessimistic; they are at the same time, in another respect, rather daring. 

Their daring lies in their devil-may-care attitude to the hypotheses recommended by 

their methods in the short term (where the short term is in fact any finite term). Whereas a 

traditional confirmation theorist is at pains to say that, after a certain amount of data has 

been collected, we are—in many circumstances at least—justified in believing the 

hypotheses recommended by our inductive methods, the PLT theorist will allow no such 

thing. Justification, in their view, applies to methods—in virtue of their convergence 

properties—but not to the beliefs endorsed by those methods. At best, the beliefs have an 

incidental significance: like wood shavings on the floor after a particularly fulfilling 

carpentry session, we may regard them with satisfaction as byproducts of aptly applied 

technique. 

Where is the daring? Consider the ancient example of the traveler about to board the 

aircraft. To this individual, the PLT theorist cannot say: you can fly with confidence, 

because we have very good reason to think that the theory of aerodynamics that supplies 

the basis for the aircraft’s construction is true (or at least, empirically adequate). They must 

say instead: the best we can say about our current theory of aerodynamics is that it was 

arrived at by the application of a method that will eventually lead to the truth. Who 

knows—perhaps we are there already. Good luck! 

How does the PLT theorist react to the confirmation theorist’s reassuring words? 

They are merely words, signifying nothing of true epistemic value. For all we know, we 

could discover tomorrow that our best aerodynamic theory is false. Such are the 

consequences of taking the problem of induction seriously. Indeed, in their attitude to the 

scientific method, PLT theorists have much in common with Popperians, although where 
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Popper claims to have avoided induction altogether, PLT theorists claim to have solved (or 

at least to have ameliorated) Hume’s problem. 

In this discussion of the epistemology of PLT, I have been for the most part 

channeling Kelly (1996) and Glymour and Kelly (2004). What do Harman and Kulkarni 

think? It is, again, difficult to tell: they do not provide any story as to how to regard the 

hypotheses recommended by their learning methods. One thing seems clear, though: on 

Harman and Kulkarni’s variant of PLT it would be utterly unreasonable to expect these 

hypotheses to capture the truth. Let me explain. 

Harman and Kulkarni, following Vapnik and Chervonenkis, set things up as 

follows. The basic inductive task is to predict, given the known properties of a specimen, 

certain of its as-yet unknown properties. In the simplest case, there are a number of 

properties that are known, and one qualitative property that is unknown. The task is to 

predict whether or not this latter property is present. One class of cases that fits this 

description are categorization tasks: you are presented with, say, pictures of a wide range of 

animals, and your job is to say whether or not each animal is a dog. 

The “truth” is assumed to be some probability distribution relating the various 

properties, for example, a distribution giving the probability that an animal is dog 

conditional on its having such and such appearances. But the goal of the formal learner in 

Vapnik and Chervonenkis’s theory is not to learn this stochastic truth. It is rather to arrive 

at a deterministic prediction rule that minimizes predictive error. (Various other goals are 

also possible, but it is invariably a deterministic rule that is sought.) Harman and Kulkarni 

call this rule (following a tradition in statistics) the “Bayes Rule” for the particular 

predictive problem and probability distribution. To avoid confusion, let me call it instead 

the Best Rule. The goal of Vapnik and Chervonenkis’s theory, then, is to find an inductive 

learning procedure that, in the limit, learns the Best Rule, or comes as close as possible, in 

any circumstances. 

Clearly, unless the truth happens to be deterministic, the Best Rule is not the True 

Rule. The philosophical learning theorist’s guarantee of convergence on the Best Rule is 

therefore not a guarantee of convergence on the truth, but rather of convergence on a 

particularly useful deterministic heuristic. How, then, to regard whatever hypothesis is 
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recommended by the learning theorist at any time? It seems that even in the limit, your 

attitude to this hypothesis must be pragmatic—you may regard the hypothesis as useful, but 

not as true. Indeed, you will be pretty sure that it is false. And in the short term, of course, 

you cannot know, or even (following Kelly and Glymour) have any evidence for, the 

proposition that the hypothesis has predictive value. 

What, then, should philosophers of science take away from all of this? That the idea 

of evidential support in science is a fallacy? Is this supposed to be a revisionary position, a 

proposal for the epistemic reform of the scientific method? Or is it supposed to be 

consistent with scientists’ most deeply held epistemic beliefs? I wish that Harman and 

Kulkarni had given us answers to these Popperian questions. 

 

2. Simplicity and VC Dimension  

VC Dimension 

In this second part of my remarks I want to focus on the idea that Vapnik and 

Chervonenkis’s theory supplies, in its notion of the VC dimension of a set of inductive 

rules, an interesting surrogate for simplicity in scientific reasoning. Let me begin with a 

brief overview of the principal role played by the VC dimension in statistical learning 

theory. 

Vapnik and Chervonenkis are concerned not only with the problem of converging 

on the predictively Best Rule, but also on the problem of converging on the best rule in any 

given set of rules, if the set in question does not contain the Best Rule itself. 

Suppose that you start out with an inductive bias: your learning method, rather than 

taking into account every possible inductive rule configured to the question at hand, will 

consider only those inductive rules falling into a certain class. Call the rules in this class the 

workable rules. (The workable rules are not the logically possible rules, then, but the 

logically possible rules that you are willing to countenance.) 

You would like to find the best rule in your set of workable rules. Ideally, of course, 

you would like to find the Best Rule itself, which is possible only if the Best Rule is in the 

workable set. There is a tension between these two desiderata. On the one hand, the larger 
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the set of workable rules, the more likely it is to contain the Best Rule. On the other hand, 

the larger and more complicated the set of workable rules, the harder it is to find the best 

workable rule. Vapnik and Chervonenkis’s theory gives some mathematical substance to 

this latter claim, from the characteristically pessimistic learning-theoretic point of view. It 

defines a simple and intuitive learning method called enumerative induction—simply the 

method of choosing from the workable set the rule that best fits the data observed so far—

and it states a condition on the set of workable rules that is necessary and sufficient for 

enumerative induction to converge, in the limit, on the best workable rule. 

That condition is as follows: the set of workable rules must have a finite VC 

dimension. I refer you to Harman and Kulkarni’s excellent discussion for a definition of VC 

dimension that is better than anything I can squeeze in here. But the idea is roughly as 

follows. Familiar from the philosophical literature on “curve-fitting” is the idea that some 

families of curves have more leeway to fit the data than others. Linear functions are quite 

constrained in their ability to intersect with, or even to come close to, a set of two-

dimensional data points; high-order polynomials and certain trigonometric functions have 

more “wiggle room” (see Figure 1 below). 

The “wiggling” in question is the adjustment of parameters; while most cubic 

polynomials will come nowhere near fitting a set of four data points, there is sure to be 

some cubic that fits them exactly, that is, some choice of parameters that delivers a cubic 

that gets everything exactly right. 

Think of the VC dimension of a family of rules as being a kind of measure of wiggle 

room—very loosely, the maximum number of data points that can be accommodated by 

choosing the right member of the family. 

How is the VC dimension of a family of workable rules related to the problem of 

finding the best rule in that family? Given a workable family with VC dimension n, you 

need at least n data points before you get to the point where in every case (that is, for every 

possible set of n data points), the rules that are best at predicting the data so far agree to 

some extent on what will happen in the future. To take a simple example, suppose that your 

workable family is the linear rules—you are restricting yourself to linear hypotheses—and 

that you have only a single data point so far. Say that the set of rules that intersects, or 
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comes close to intersecting, this data point are the “empirically adequate” rules in the 

workable set. At this stage, the empirically adequate rules give you no guidance about the 

future: for any future point that might come along, there is some rule that matches the data 

and also intersects this new point. Clearly, you cannot converge on the best rule in the 

workable set in any useful sense without first getting to the stage where the empirically 

adequate rules do agree on the future, since convergence requires that they say roughly the 

same thing about the future as the best rule. It follows that the workable set’s having a finite 

VC dimension is a necessary condition for this method of enumerative induction to 

converge on the best rule in that set—otherwise, there is always some arbitrarily large 

amount of data that, with respect to the workable set, badly empirically underdetermines 

the future. Vapnik and Chervonenkis show that having finite VC dimension is also a 

sufficient condition for convergence. 

 

(a) (b)

(c)
 

 

Figure 1: Curve-fitting: Any four data points can be fitted accurately by (a) some 

sine curve (y = a sin bx) and (b) some cubic (y = ax3 + bx2 + cx + d), but not 

necessarily by (c) a line (y = ax + b). 
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The Workability Hierarchy 

Now, you might think that the setup of the Vapnik and Chervonenkis theory is limiting in 

the following way: though scientists may start out by limiting themselves to the rules in a 

certain set—as some mid-century social scientists limited themselves to linear causal 

models—they do not thereby foreclose all possibility of moving outside the set if they run 

into trouble. They might start out with a fairly simple set, then, but if it becomes clear that 

the best rule in the set is not very good, they may move on to a set with more “wiggle 

room”—with a higher VC dimension. 

Vapnik and Chervonenkis represent this more open-minded learning procedure as 

follows. You designate a “workability hierarchy”: a sequence of sets of rules with ever 

greater VC dimension. The first set in the sequence might have a VC dimension of 2, the 

second set a VC dimension of 3, and so on. You then begin to collect data. Rather than 

explicitly restricting yourself to the first set of rules in the sequence, you rather choose the 

rule at any given time that minimizes the combination of empirical error on the existing 

data and VC dimension (thus departing from the method of enumerative induction, which 

minimizes empirical error alone). That is, you find a rule that fits the data well while 

appearing as early as possible in the workability hierarchy, or in other words, a rule that 

retrodicts what has been observed without exploiting a greater than necessary degree of 

“wiggle room”. Vapnik and Chervonenkis call this method “structural risk minimization”. 

Harman and Kulkarni argue that the virtues of such a method underlie science’s 

preference for simple over complex theories, in those cases where the conditions required 

for statistical learning hold. In doing so, they imply that VC dimension provides a good 

approximation for, perhaps even a good account of, simplicity in at least some parts of 

science. It is this claim that I wish to examine. 

Simplicity in Science 

Here are some things that are said of simple hypotheses in science, listed in a non-

exhaustive spirit: 
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1. Simpler hypotheses are less hospitable to ad hockery—they offer less “wiggle 

room”, and so are harder to fit to a given set of data. 

2. Simpler hypotheses are easier to falsify. 

3. We should prefer simpler hypotheses. 

4. Simpler hypotheses are more likely to be true. 

5. Simpler hypotheses make better explanations. 

 

An implicit “all other things being equal” rider should be understood as attached to each of 

these maxims; maxim (5), for example, does not imply that simplicity is the sole factor that 

affects a hypothesis’s explanatory potential, but rather that it is one such quality. 

Note that hypotheses here should be understood as encompassing families of 

possible laws of nature—a hypothesis about two variables might state that they stand in a 

linear relationship, then, but it will not specify a value for the constant of proportionality. 

Throughout this discussion, I will assume that all questions about simplicity are asked with 

respect to well-defined families. In reality, of course, things are not so straightforward: you 

may be asked about the simplicity of a particular putative law of nature, constants and all, 

and it may not be clear what family of laws it should, for the purpose of answering the 

question, be considered to belong to. 

The five simplicity maxims can be subdivided into three groups: (1) and (2) concern 

accommodation, (3) and (4) concern acceptance, and (5) concerns, of course, explanation. 

Accommodation 

Insofar as the central concept of the theory of accommodation is room, or more precisely, 

wiggle room—the ability to find space for whatever data come along—the notion of VC 

dimension is obviously well equipped to play the role of simplicity in the accommodation-

related maxims. 

Harman and Kulkarni champion the VC-dimension notion over other notions of 

simplicity for this reason. In particular, they criticize Popper’s suggestion that the 

simplicity of a hypothesis is proportional to its number of adjustable parameters. These two 

characterizations of simplicity sometimes come apart, Harman and Kulkarni argue: the 
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family of sine curves y = a sin bx has only two adjustable parameters yet has a great deal of 

wiggle room, as you can see from figure 1, and so a high—indeed, an infinite—VC 

dimension (Harman and Kulkarni, 72). Consequently, the hypothesis that some 

phenomenon is characterized by a sine curve counts as simple on Popper’s account and as 

complex on Harman and Kulkarni’s account; because the hypothesis can accommodate 

almost any set of data points and so is difficult or impossible to falsify, it is clearly Harman 

and Kulkarni’s rather than Popper’s definition of simplicity that vindicates the maxims in 

this particular case. 

Acceptance 

Next, the role of simplicity in deciding whether or not to accept a hypothesis. A preference 

for simple hypotheses may be motivated in various ways. One way is articulated by maxim 

(4), according to which, all other things being equal, a simpler hypothesis is more likely to 

be true. If two hypotheses fit the data equally well, then, we will be on safer ground if we 

choose the simpler of the two. Such a motivation does not suit the PLT theorist, however, 

who has no truck with the probabilities of particular hypotheses at particular times (see 

“Daring” above). 

A more pragmatic approach to justification is germane to PLT. In its most 

straightforward form, it might run as follows: it is more expensive to engineer a complex 

hypothesis than a simple hypothesis. Thus we will save money by sticking to the simplest 

hypothesis that fits the data reasonably well. 

Does the VC-dimension notion of simplicity fit this line of reasoning? I am not sure. 

Insofar as a complex hypothesis (in the VC-dimension sense) offers more “wiggle room”, it 

might be less expensive to start out a scientific investigation with an all-purpose complex 

hypothesis and optimize the wiggling process (writing highly efficient computer programs 

to compute the best values for the parameters and so on) than to start with simpler 

hypotheses and then retool every time they fail to fit the data (or at least, every time they 

fail in the kind of ongoing, discouraging way that suggests that fresh ideas are needed).
4
 

                                                 
4
 For a pragmatic defense of a preference for simplicity that turns on this very issue of the costs of cognitive 

retooling when evidence forces a theory to be “retracted”, see Kelly (2007). 
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Indeed, why not begin with the family of sine curves? It is simple to compute, and can be 

made to fit almost any data. The optimal choice of starting point from a cost-benefit point 

of view might well be, then, a family such as the sine curves that is structurally very simple 

(simple, perhaps, in Popper’s sense) but that has a very high VC dimension. 

Is this an argument that the VC-dimension notion of simplicity is unsuitable for the 

purposes of making a pragmatic case for preferring simple hypotheses, or is it an argument 

against the pragmatic case itself? A bit of both, I think: on the one hand, what makes the 

sine family attractive to the practically-minded curve-fitter is its simplicity in some sense 

not captured by its VC dimension; on the other hand, it is unclear to me, given the merits of 

the “start out complex and optimize the wiggling” strategy of the previous paragraph, that 

cost-benefit considerations could ever fully motivate our preference for theoretical 

simplicity. In this latter respect, I suppose that I am unable to escape the pull of Glymour’s 

(1980) suggestion that the fundamental problem with hypotheses that are overly complex 

with respect to the available data is that they contain content that is not empirically 

confirmed by the data. 

Explanation 

My final topic is explanation. The explanatory maxim (5) is perhaps the most controversial 

of the group, in the sense that a substantial number of philosophers would deny that 

simplicity per se has any role to play in explanatory goodness at all. (Except, that is, as a 

sign of some deeper virtue: a causal theorist of explanation would concede, say, that 

explanations that omit causally irrelevant factors are both better and simpler explanations 

than those that include them, but here simplicity is a mere byproduct of the requirement of 

causal relevance.) 

One account of explanation, however—the unification account—invokes simplicity 

explicitly as a desideratum (Friedman 1974; Kitcher 1989). Could the VC-dimension notion 

of simplicity be useful to a unification theorist? 

Let me answer this question with the help of an example. I take it that a paradigm of 

explanatory simplicity for a unificationist is Newton’s gravitational theory. With only the 
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geometry of space and time, the three laws of motion, and the gravitational force law, 

Newton is able to explain a vast range of phenomena. 

That “vast range” should give you pause. How high, exactly, is the VC dimension of 

the Newtonian theory? It is not immediately clear. On the one hand, the theory articulates a 

tight constraint on the movements of any object, given the properties and movements of all 

the other objects. The tightness of this constraint suggests a lack of wiggle room. On the 

other hand, what matters for VC dimension is not the wiggle room given all the other 

objects, but the wiggle room given all the other known objects. In this respect Newtonian 

theory offers quite a bit of wiggle room, as several famous episodes from the history of 

science, each involving the positing of unseen matter, will remind you. The first is the 

postulation of the planet Neptune to explain irregularities in the orbit of Uranus. The 

second is the postulation of the (in fact non-existent) planet Vulcan to explain irregularities 

in the orbit of Mercury. The third (not an amendment to Newtonian theory, but you get my 

point) is the postulation of dark matter to explain irregularities in the internal movements of 

galaxies. 

Of course, there are checks on these acts of accommodation, most of them coming 

from outside Newtonian gravitational theory itself. But the theory must, I think, be credited 

with a fairly large suite of empirical rooms, or in other words, an impressive power to 

accommodate any given set of data. I want to suggest that this ability to accommodate does 

not in any way undermine the simplicity of Newtonian explanation, in the sense that 

matters to a unificationist. If anything, quite the contrary: the unifying power of Newtonian 

theory comes in part from its uniform applicability to all matter, yet this same applicability 

is what enables the ad hoc postulation of additional, unseen bodies to account for empirical 

anomalies. Any deep unification, I suggest, will tend allow such strategies; thus, the sense 

of simplicity employed by the unificationist to capture this kind of depth will not coincide 

with the VC-dimension notion of simplicity. 

Perhaps there is hope for a revised notion of simplicity, useful to a unificationist, 

based on the same mathematical ideas as the VC dimension. This revised notion would 

attend to a hypothesis’s ability to fit the totality of relevant facts—not just the known 

bodies, but all the bodies. In this respect, as I remarked above, Newtonian theory does seem 
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to offer a tight constraint on what is allowed to happen, in the sense that adjustments of its 

one parameter—the gravitational constant—give you very little leeway when it comes to 

fitting the complete set of facts about the motion of massive bodies in space and time. 

Then again, does the Newtonian theory have only one adjustable parameter? As 

Einstein so fruitfully remarked, the theory employs two notions of mass, inertial mass and 

gravitational mass, which it considers to be identical. But could this identity claim not be 

seen as a claim about the value of a parameter? Perhaps the family of rules to which 

Newtonian theory ought to be regarded as belonging for the purposes of simplicity 

determination includes rules that posit a wide range of relationships between rest mass and 

inertial mass, a range that would certainly increase Newtonianism’s power to accommodate 

and so decrease its simplicity. Such are the difficulties of a family-relative notion of 

simplicity; I am not sure how they should be resolved. 
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