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Gil Harman and Sanjeev Kulkarni have written an enjoyable and informative book that 

makes Vladimir Vapnik’s ideas accessible to a wide audience and explores their relevance 

to the philosophy of induction and reliable reasoning. The undertaking is important, and the 

execution is laudable. 

Vapnik’s work with Alexey Chervonenkis on statistical classification, carried out in 

the Soviet Union in the 1960s and 1970s, became popular in computer science in the 1990s, 

partly as the result of Vapnik’s books in English. Vapnik’s statistical learning theory and 

the statistical methods he calls support vector machines now dominate machine learning, 

the branch of computer science concerned with statistical prediction, and recently (largely 

after Harman and Kulkarni completed their book) these ideas have also become well known 

among mathematical statisticians. 

A century ago, when the academic world was smaller and less specialized, 

philosophers, mathematicians, and scientists interested in probability, induction, and 

scientific methodology talked with each other more than they do now.  Keynes studied 

Bortkiewicz, Kolmogorov studied von Mises, Le Dantec debated Borel, and Fisher debated 

Jeffreys. Today, debate about probability and induction is mostly conducted within more 

homogeneous circles, intellectual communities that sometimes cross the boundaries of 

academic disciplines but overlap less in their discourse than in their membership.  

Philosophy of science, cognitive science, and machine learning are three of these 

communities. The greatest virtue of this book is that it makes ideas from these three 

communities confront each other. In particular, it looks at how Vapnik’s ideas in machine 

learning can answer or dissolve questions and puzzles that have been posed by 

philosophers. 

This leaves out, of course, many other communities that debate probability and 

reliable reasoning:  mathematical probabilists, the many tribes of mathematical statisticians, 
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economists, psychologists, information theorists, and even other tribes of computer 

scientists, including those within machine learning who study prediction with expert advice 

[2]. The work of Vapnik and Chervonenkis is only a tiny part of the vast literature on 

probability and prediction that is relevant to philosophy’s questions about induction and 

reliable reasoning, and the next step beyond Harman and Kulkarni’s book is surely to try to 

fit what they have done into a larger picture. 

From a historical viewpoint, and also from the viewpoint of modern mathematical 

probability, Vapnik’s statistical learning theory makes a very special assumption: it 

assumes that repeated observations are drawn from the same probability distribution. As 

Harman and Kulkarni explain (p. 35), “we assume that the data represent a random sample 

arising from the background probability distribution, and we assume that new cases that are 

encountered are also randomly produced by that distribution.” This is the famous 

assumption that observations are independently and identically distributed.  It can be 

weakened slightly to the assumption that the observations are exchangeable – i.e.,  that their 

probability distribution does not change when the order is permuted.  Are there really many 

applications where either assumption is reasonable? 

Leibniz thought not. In 1703, Jacob Bernoulli wrote to Leibniz to explain how his 

law of large numbers would use past examples to find probabilities for future ones:  “For 

example, if I perceive, having made the experiment in very many pairs of young and old, 

that it happens 1000 times that the young person outlives the old person and the reverse 

happens only 500 times, then I may safely enough conclude that it is twice as probable that 

a young person will outlive an old one as the reverse.” Leibniz responded skeptically: 

“Who is to say that the following result will not diverge somewhat from the law of all the 

preceding ones – because of the mutability of things?  New diseases attack mankind. Even 

if you have observed the results for any number of deaths, you have not therefore set limits 

on the nature of things so that they cannot vary in the future.”  (See [1], pp.38-39.)   

The history of mathematical probability in the three centuries after Leibniz’s 

exchange with Bernoulli can be framed as a continuation of their debate. Mathematicians 

continually refined Bernoulli’s law of large numbers, but its success in applications was 

spotty. In the 19
th

 century, Laplace’s theory of errors of measurement reigned in astronomy, 



G. Shafer    12 

while its applications in human affairs were rightly ridiculed. Frank Knight, founder of the 

Chicago school of economics, coined the distinction between “risk” and “uncertainty” to 

distinguish between the situation of an insurance company, which can count on the law of 

large numbers, and the situation of a businessman, who does not enjoy the luxury of many 

repeated chances under constant conditions. 

The great accomplishment of mathematical probability during the twentieth century 

was to move beyond the picture of successive independent draws from a single probability 

distribution to the idea of a stochastic process, in which probabilities evolve.  This change 

was already underway in the 1920s, with the explosion of work on Markov chains [3] and 

Weiner’s application of functional analysis to model Brownian motion. It was consecrated 

in 1953 by Joe Doob’s general framework for stochastic processes, which applied to 

continuous as well as discrete time [4]. By 1960, Jerzy Neyman could declare that science 

had become the study of stochastic processes [6].   

Neyman saw four periods in the history of indeterminism in science: 

 

1. Marginal indeterminism, the period in the 19
th

 century when scientific research was 

indeterministic except in the domain of errors of measurement. 

 

2. Static indeterminism, the period at the end of the 19
th

 and beginning of the 20
th

 

century when populations were the main subject of scientific study, so that the idea 

of independent draws from populations was dominant. 

 

3. Static indeterministic experimentation, the period from 1920 to 1940 when R. A. 

Fisher’s ideas were dominant and the basic ideas of statistical testing and estimation 

were developed. 

 

4. Dynamic indeterminism, already in full swing in 1960, when every serious study in 

science was a study of some evolutionary chance mechanism. 



Comments on “Reliable Reasoning”    13 

 

“In order that the applied statistician be in a position to cooperate effectively with the 

modern experimental scientist,” Neyman declared, “the theoretical equipment of the 

statistician must include familiarity and capability of dealing with stochastic processes.” 

In the half century since Neyman wrote, the theory and applications of stochastic 

processes have developed as he envisioned. Natural science and economics are awash with 

dynamic stochastic modeling. How can it be, then, that Vapnik’s work, based on the tired 

old idea of independent identically distributed observations, has suddenly emerged as so 

powerful, finding so many applications in biology and other data-rich domains? 

Are these domains in which probabilities do not evolve?  I doubt it. The data sets 

that people in machine learning use to test competing methods generally fails tests of 

exchangeability, so much so that it is standard practice to permute the order of the 

observations in these data sets before applying methods, such as support vector machines, 

that assume exchangeability. 

In fact, the results of statistical learning theory that use exchangeability – the 

guarantees of accuracy based on finite Vapnik-Chervonenkis dimension, for example – are 

so asymptotic (require such cosmic sample sizes in order to give interesting bounds) that 

they have little to say about the success of support vector machines. (Concerning accurate 

confidence levels for successive predictions of a support vector machine or other prediction 

method when exchangeability does hold, see [8,9].) 

The key to the success of support vector machines seems to lie elsewhere – in a 

feature of their implementation that Harman and Kulkarni mention on pp. 85-87:  the 

mapping of data to higher dimensional spaces where classes can be more nearly linearly 

separated. This mapping is actually implemented implicitly with kernels, which assign to 

pairs of vectors in the original space the angles between the vectors to which they would be 

mapped if the mapping were spelled out. Such kernels were studied by probabilists and 

mathematical statisticians starting in the 1940s, but it was computer scientists 

implementing support vector machines who first took advantage of them on a large scale, to 

process the type of data that has now become so common in medicine and other branches of 

biology, where the number of individuals measured many be reasonable but an immense 

number of variables are measured on each individual. 
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Kernels are becoming increasingly important in computer science and mathematical 

statistics, not only in support vector machines but in other techniques as well. What is 

crucial in all cases is the choice of the kernel. Choosing the kernel means choosing what 

features of the observations we want to use for prediction. Choosing which measurements 

or which aspects of the measurement (the mapping the kernel represents is a mapping from 

the original measurements to their many aspects) has always been the central question for 

statistical prediction, and it becomes only more acute in the high-dimensional problems 

where support vector machines and other kernel techniques are so useful.  If I were to fault 

Harman and Kulkarni on one point, it is that they do not dwell on the experimentation and 

reasoning that goes into choosing the kernel. This seems to be where applications of 

machine learning generate new knowledge, and we might learn something from a 

philosophical analysis. Is the choice of a kernel an example of induction? Is it inference to 

the best explanation? 

One reason support vector machines can be successful in spite of the failure of the 

exchangeability that Vapnik assumes in all his theoretical work is that the machines rely not 

so much on stability of the probability distribution from which examples are drawn as on 

the stability of the relation between the features used for prediction and what is predicted. 

In order to make this point as clearly as possible, let us write x for the vector of 

measurements we use for prediction (the object) and y for what we predict (the object’s 

label).  An example is a pair (x,y). A kernel is a function K that assigns a real number to 

every pair of examples (x,y) and (x′,y′).  We observe n examples, say (x1,y1),…,(xn,yn) and a 

new object xn+1, and we want to predict the label yn+1. The support vector machine 

determined by a kernel K is a way of making this prediction.  Exchangeability requires that 

the n+1 examples (x1,y1),…,(xn,yn),(xn+1,yn+1) all be drawn from the same probability 

distribution. In particular, the xi should all be drawn from the same distribution. But many 

methods of prediction, including support vector machines, can do a good job even when the 

distribution from which the xi are drawn varies, provided the dependence of yi on xi remains 

somewhat stable. It is enough, for example, if the conditional probabilities P(yi|xi) do not 

change and yi is independent, given xi, of the earlier examples [10]. 
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I would also like to add a thought to Harman and Kulkarni’s discussion of the 

contrast between induction and transduction (pp. 90-94). As Vovk, Gammerman, and I 

argue in [9], the contrast may be clarified if we first discuss on-line prediction.  When we 

talk about induction, we usually think about deriving a rule from a batch of examples, say 

(x1,y1),…,(xn,yn), and then using that rule for prediction in many future examples. But in an 

on-line setting, where we see example after example and predict y from x each time, it may 

be practical to update the prediction rule each time. We predict yn+1 from xn+1 using a rule 

we learn from analyzing (x1,y1),…,(xn,yn), but then we observe yn+1, and so before 

predicting yn+2 from xn+2, we get a new prediction rule by analyzing all n+1 examples 

(x1,y1),…,(xn,yn),(xn+1,yn+1).  And so on.  We use each rule only once. Is a rule that we use 

only once a rule? Is finding a rule that we immediately discard induction? The question is 

obviously relevant to cognitive science if some mental routines are slightly modified 

whenever they are used. 

Finally, I would like to mention recent work on on-line prediction by Vovk, 

Takemura, and myself [7], which leads to some new insights into the question of whether 

examples need to be drawn from a probability distribution in order for good probabilistic 

prediction to be possible. In general, probability predictions are considered good if they 

pass statistical tests that compare them with what actually happens. Consider, for example, 

a forecaster who uses information xi to give a probability pi. for whether it will rain (yi = 1) 

or not (yi = 0).  It is easy to construct statistical tests for whether the pi agree with the yi 

well enough, and these tests can be reframed as strategies for a gambler who tries to 

multiply the capital he risks by a large factor betting at the odds given by the pi.  It turns out 

that the gambler can combine these strategies into a single strategy, which involves a kernel 

that measures how much a new example (xn+1,yn+1) is like old examples (x1,y1),…,(xn,yn). It 

also turns out that the forecaster can defeat such a strategy, regardless of how the weather 

turns out.  We call this defensive forecasting. 

The possibility of defensive forecasting means that good on-line prediction does not 

depend on examples being drawn from a background probability distribution. The most 

crucial question in prediction is not whether examples are being chosen from probabilities 

but whether the prediction is on-line. If the prediction is on-line, there are many ways it can 
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be done well.  Some of these seem to involve the estimation of a background probability 

distribution, but this is illusory, for the estimate of the background probability distribution 

can change drastically as prediction proceeds. The important point is that no matter how 

reality actually chooses the yi, you can give pi that avoid extending any trends that might 

lead to statistical rejection of your forecasting. 

In their discussion of reflective equilibrium (pp. 13-19), Harman and Kulkarni 

mention the situation of a juror, who is scarcely in an on-line setting. The opposing 

counsels will propose to the juror quite different sequences of examples in which the case 

at hand might be placed.  How to choose?  This is Reichenbach’s problem of choosing a 

reference class.  Philosophy has something to say here. Bayesians and non-Bayesian 

theories of subjective probability have something to say.  Methods of machine learning, it 

seems, do not. 
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