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Abstract 

The purpose of this paper is twofold. First we want to extent a specific paranormal modal logic in 

such a way as obtain a paraconsistent and paracomplete multimodal logic able to formalize the 

notions of plausibility and certainty. With this logic at hand, and this is our second purpose, we 

shall use a modified version of Reiter‘s default logic to build a sort of inductive logic of plausibility 

and certainty able to represent some basic principles of epistemic inductive reasoning, such as a 

negative autoepistemic principle, an ‗error-prone feature of induction‘ principle and a confirmation 

by enumeration principle. 

 

 

Some things make the combination of modal logic and paraconsistent logic (da Costa 1974) 

a very interesting enterprise (Fuhrmann 1990) (da Costa and Carnielli 1986) (Goble 2006). 

First of all, many knowledge representation problems involving modalities seem to require 

a paraconsistent reasoning mechanism. An agent able to represent its beliefs and doxastic 

states, for example, may have evidences both to belief and not belief something; or its 

normative component might both require and prohibit something. Second, some have 

defended the idea that normal modal logic already embodies a kind of paraconsistency 

(Béziau 2002) (Marcos 2005) (Silvestre 2006). For instance, defining in S5 the derivated 

operator ~ as □, we have a unary operator that does not satisfy the principle of explosion 

and has enough properties to be called a negation, entitling us then to classify S5 as a 

paraconsistent logic (Béziau 2002).  

In (Silvestre 2011) and (Silvestre 2006) we presented a combination of modal and 

paraconsistent logic called paranormal modal logic. The motivation for this logic lies on the 

concept of inductive plausibility. By inductive plausibility we mean the same as Carnap‘s 

pragmatical probability (Carnap 1946), that is, a qualitative label we attach to the 
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conclusion of inductive inferences. The novelty here is that when we seriously take into 

consideration the contradictions that are sure to arise from the use of such inferences (Perlis 

1987) (Pequeno and Buchsbaum 1991), we see that there are not one, but two authentic 

approaches to deal with the problem (Silvestre 2007). These skeptical and credulous 

approaches to induction, as we have named them, give rise to two different plausibility 

notions which bear important relations to the field of paraconsistent and paracomplete logic 

(Loparíc and da Costa 1984): while the skeptical plausibility is a paracomplete notion, the 

credulous plausibility is a paraconsistent one. The idea of paranormal modal logic then is to 

analyze these two notions inside a modal framework. 

First of all, we have a modal operator ? (used in a post-fixed notation) meant to 

represent the notion of credulous plausibility. Alike to ◇, ? is true iff  is true in at least 

one world (which we call plausible world). In addition to ?, there is the □-like operator ! 

meant to represent the notion of skeptical plausibility or acceptance: ! is true iff  is true 

in all plausible worlds. While the primitive negation  is, in connection with ?, 

paraconsistent – we might have both ? and (?) –, in connection with ! it is 

paracomplete – it might be that neither ! nor (!) are true. Being its paraconsistency and 

paracompleteness dependent on the modality attached to the formula, we call  a modality-

dependent paranormal negation. Alike to normal modal logic, there is a family of 

paranormal modal logics related both axiomatically and semantically to each other. For 

instance, add the axiom ! (T?) to K?, which is the most basic paranormal modal logic, 

and you have the system T?; add !!! (4) to T? and you have S4?; add ! (B) to 

S4? and you have S5?, and so on and so forth. 

Considering some key aspects of the philosophical framework behind paranormal 

modal logic, two related combination developments can be thought. First, following the 

original motivation of the very first versions of paranormal modal logic (Pequeno and 

Buchsbaum 1991), we might think of using the notions of plausibility along with an 

inductive reasoning mechanism, therefore giving rise to an inductive and consequently 

nonmonotonic paraconsistent logic. Second, since ? and ! represent epistemic notions, it 

might be useful to investigate the relation between these plausibility notions and other 



R. Silvestre    138 

 

epistemic notions. This is significant, for when we look deep at the epistemic nature of 

inductive inferences we see that in the same way that the conclusions of such inferences 

must be marked with a plausibility operator, their premises should also be referred to with 

the help of some epistemic notion (Silvestre 2010).  

Our purpose in this paper is to advance these two combination developments. For the 

sake of simplicity, we shall consider only the propositional case
2
. In the next section we 

briefly present paranormal modal logic K?. In Section 2 we introduce a multimodal logic 

meant to function as a logic of plausibility and certainty. In Section 3 we use this 

multimodal logic along with a nonmonotonic inferential mechanism to obtain a sort of logic 

of inductive. Finally, in the last section, we lay down some conclusive remarks. 

1. Paranormal Modal Logic 

As we have said, the intended meaning for the modal operators ? and ! of paranormal 

modal logic are the notions of credulous plausibility and skeptical plausibility or 

acceptability. If  is a formula, then the ? and ! mean, respectively, ― is credulously 

plausible‖ and ― is skeptically plausible or accepted‖. While ? is, we might say, a 

paraconsistent modal operator,  ! is a paracomplete one: there is a model M such that both 

? and (?) are satisfied in M and there is a model M such that neither ! nor (!) are 

satisfied in M. Both ? and ! are introduced as primitive symbols of the language. We have 

below the axiomatics of K?, which is the most basic paranormal modal logic: 

 

Positive Classical Axioms 

P1: ()  

P2: (())(()()) 

P3:  

P4:  

P5: () 

P6:  
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P7:  

P8: ()(()()) 

Paranormal Classical Axioms 

A1: ()(()),     wherein  is -free and  is !-free   

A2: (),                          wherein  is -free  

A3: ,                                    wherein  is !-free 

Non-Positive Additional Classical Axioms 

N1: ()() 

N2:()() 

N3:()()    

N4: 

N5:(()) 

Paranormal Modal Axioms 

K1: ~((~)!) 

K2: ()!(!) 

K3: ()() 

Modal Axioms 

K: (  )!(!!) 

Rules of Inference 

MP: ,  /  

N:  / !  

 

Axioms A1-A3 are restricted in such a way as to guarantee the paraconsistent and 

paracomplete behavior of ? and !, respectively. Axioms N1-N5 are there to restore the 

deductive power awakened by the restrictions of A1-A3. K1 sets ? and ! as the dual of each 

other. ~ is a derived operator meant to play the role of classical negation: ~ =def pp, 

there p is an arbitrary propositional symbol. Along with A1-A3, axioms K2 and K3 are the 

key of K?‘s non-classical behavior. While K2 allows us to go from the skeptical 

implausibility of  ((!)) to the skeptical plausibility of  (()!), K3 allows us to go 

from the credulous plausibility of  (()?) to the credulous implausibility of  ((?))
3
. 
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Finally, K? and N? are paranormal modal logic equivalents to axiom K and rule N, 

respectively. 

Regarding the notion of deduction, following Fitting (Fitting 1993) we make use of the 

distinction between global and local premises. From a proof-theoretical point of view, the 

difference is that only those formulas obtained exclusively with the help of the global 

premises are able use the necessitation rule. In symbols we have A⊹B⊢ as meaning that 

 is deducted from A and B, A being the set of global premises and B the set of local 

premises. The same distinction shall be used in our definition of the notion of logical 

consequence.  

A frame in paranormal modal logic is a pair <W,R> where W is a non-empty set of 

entities called worlds (or plausible worlds) and R is a binary relation on W called 

accessibility relation. A model then is a triple <W,R,> where F = <W,R> is a frame and  

is a function mapping elements of P and W to truth-values 0 and 1. We say that the model 

M is based on F and that wW is a world of M. Bellow you have the semantics of K?: 

 

ΩM,w(p) = ℧M,w(p) = 1  iff  w(p) = 1; 

ΩM,w() = 1  iff  ℧M,w() = 0;  

℧M,w() = 1  iff  ΩM,w() = 0; 

ΩM,w() = 1  iff  ΩM,w() = 0 or ΩM,w() = 1;  

℧M,w() = 1  iff  ΩM,w() = 0 or ℧M,w() = 1; 

ΩM,w() = 1  iff  ΩM,w() = 1 and ΩM,w() = 1;  

℧M,w() = 1  iff  ℧M,w() = 1 and ℧M,w() = 1; 

ΩM,w() = 1  iff  ΩM,w() = 1 or ΩM,w() = 1;  

℧M,w() = 1  iff  ℧M,w() = 1 or ℧M,w() = 1; 

ΩM,w() = 1   iff for some w‘W such that wRw‘, ΩM,w‘() = 1;  

℧M,w() = 1   iff for all w‘W such that wRw‘, ℧M,w‘() = 1; 

ΩM,w(!) = 1   iff for all w‘W such that wRw‘, ΩM,w‘() = 1;  

℧M,w(!) = 1    iff for some w‘W such that wRw‘, ℧M,w‘() = 1. 
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Formula  is satisfied in model M and world w (in symbols: M,w⊩) iff ΩM,w()=1; if  is 

satisfied in all worlds w of M we say that M satisfies  (in symbols: M⊩). We then say 

that  is a logical consequence of A and B, A being the global premises and B the local 

ones (in symbols: A⊹B⊨) iff, given a specific set of frames F (which in K? is the set of all 

frames), for every model M based on F, if M satisfies all members of A, then for every 

world w of M such that M,w⊩, for every B, M,w⊩4
.  

Ω and ℧ are evaluation functions which, depending on the modal operator at hand, 

maximize or minimize the truth-value of formulas: while Ω minimizes and ℧ maximizes !-

marked formulas, Ω maximizes and ℧ minimizes ?-marked ones. As we have shown 

above, it is Ω which is used in the definition of the notion of satisfaction. The need of these 

two functions lies on the interpretation of the negation symbol : the result of Ω applied to 

 is defined in function of ℧, and vice-versa. This in fact is the semantic key of 

paranormal modal logic‘s non-classical behavior. K? is sound and complete (Silvestre 

2011).  

As we have said, exactly in the same way as it happens with normal modal logic, 

there is a semantic and axiomatic relation between the several paranormal modal systems. 

If, for instance, we restrict ourselves to the class of serial frames we obtain system D?, 

which is syntactically obtained by adding !? to the axiomatics of K?; considering the 

class of all reflexive frames we have the logic T?, which is syntactically obtained by adding 

! to the axioms of K?; taking into account the class of all reflexive and symmetric 

frames we obtain the system B?, which is the same as T? plus axiom ?!; and so on and 

so forth.    

                                                           
4
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2. A Logic of Plausibility and Certainty   

What we call the logic of plausibility and certainty is a multimodal logic with two sets of 

operators. On the one hand we have the operators ? and ! (which as we have seen behave 

paraconsistently and paracompletly, respectively); on the other we have the classically 

behaved operators □ and ◇ meant to represent the notions of certainty and epistemological 

possibility: while □ means ― is certain‖, ◇ means ― is epistemologically possible‖. 

Alike to ! and ?, □ and ◇ are primitive symbols of the language.  

An important point related to the meaning of formulas in general and non-modal 

formulas in particular concerns the place they appear in the relation of deductibility or 

logical consequence. Suppose that A⊹B⊨ (or A⊹B⊢). While an arbitrary formula  

belonging to the set of global premises A can be said to mean ― is true‖ or ― is a true 

hypothesis‖, a formulae  belonging to the set B of local premises means simply ― is a 

hypothesis.‖ This is why we can apply the N rules (/! and /□) only to the global 

premises: since  is a true hypothesis, we sure can claim it to be skeptically plausible (!) 

as well as to be certain about its truth (□). Looking at the other way round, the fact that we 

can semantically conclude □ and ! from  (which is due to all models taken into account 

being exactly those in which  is true in all of its worlds) reflects the idea that  is being 

taken as a true hypothesis and not just as a certain or accepted one. In its turn,  helps to 

select, out of the multitude of worlds belonging to some of these models, the individual 

worlds that will be used to evaluate the conclusion . It therefore functions like a local, 

hypothetical premise whose truth is guaranteed not in all, but only in a few possible worlds 

of the models in question.  

In addition to the axioms and inference rules of K?, the logic of plausibility and 

certainty has the following axioms and inference rules: 

 

Paranormal Modal Axioms 

D: ! 
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B: ! 

Normal Modal Axioms 

NP: ◇□ 

K: □()(□□) 

NN: ~□~□ 

D: □◇ 

B: □◇ 

4: □□□ 

Multimodal  Axioms 

PC: □! 

Rules of Inference 

N:  / □ 

 

K is system K‘s axiom. While NP is there to guarantee □ and ◇ as the dual of each 

other (recall that both are primitive symbols), NN is needed in order to set the normal and 

classical behavior of □ (and, consequently, of ◇.) D and D guarantee, respectively, that 

what is certain is also epistemically possible and what is skeptically plausible is also 

credulous plausible. B and B say, respectively, that if  is a true then it is certain that  is 

epistemologically possible and it is skeptically plausible that  is credulously plausible. 

The reasonableness of these principles is self-evident in the case where  is a true 

hypothesis. Concerning the local, unqualified hypothesis case, B and B state a sort of 

minimal rationality principle about the hypotheses we are allowed to consider: even though 

they may be neither plausible nor epistemologically possible, they must be so from a 

second-order point of view. 4 is a sort of principle of positive introspection: if we know that 

, then we know that we know that . From B and 4 we deduce 5, □□□, which is a 

principle of negative introspection: if we are not certain about , then we are certain that 

we are not certain about . PC or the plausibility-certainty axiom states that if  is certain 

then it is also an accepted hypothesis. From it, along with MP and K1, we obtain ◇, 

that is to say, that if  is (credulously) plausible then it is epistemically possible. 
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The reason why we have excluded axioms T (□) and T (!) is that they 

represent a kind of principle of epistemic arrogance undesirable in the case of both certainty 

and skeptical plausibility. Taking  as meaning ― is true,‖ while T means that if we are 

certain that  is true then it is true, T means that accepting  as true entails that it is true. 

On similar grounds, T and T cannot be accepted if we take  as representing an 

unqualified hypothesis. While from T along with K1 we conclude , which means 

that every conceivable hypothesis is automatically a plausible one, from T we derive 

□, which means that every conceivable hypothesis is an irrevocable one. 4 (!  

!!) was not included on account of the desirableness of allowing gradations of credulous 

plausibility (T along with K1 entails ), from which it is possible to develop, as we 

shall see below, a quantitative theory of plausibility. 

About the relation between our modal operators, we have that the following axioms 

are valid in the logic of plausibility and certainty: □!, that is, from certainty we obtain 

acceptance, !?, that is, from acceptance we obtain (credulous) plausibility, and 

?◇, that is, from plausibility we get epistemic possibility.  

A frame in the logic of plausibility and certainty is a triple <W,R?,R◇> where W is a 

non-empty set of worlds, R? is a binary relation on W called plausibility accessibility 

relation and R◇ is a binary relation on W called certainty accessibility relation. R? and R◇ 

satisfy the following conditions: (i) for every w,w‘W if wR◇w‘ then wRw‘, (ii) for every 

wW there is at least one w‘W and at least one w‖W such that wR◇w‘ and wRw‖, (iii) 

for every w,w‘W if wR◇w‘ then w‘R◇w and if wR?w‘ then w‘R?w, and (iv) for every 

w,w‘,w‖W, if wR◇w‘ and w‘R◇w‖ then wR◇w‖. A model then is a quadruple 

<W,R?,R◇,> where F = <W,R?,R◇> is a frame and  is function mapping elements of P 

and W to truth-values 0 and 1. For the evaluation functions Ω and ℧ we have the following 

modification on what has been shown above: 
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ΩM,w() = 1   iff for some w‘W such that wR?w‘, ΩM,w‘() = 1;  

℧M,w() = 1   iff for all w‘W such that wR?w‘, ℧M,w‘() = 1; 

ΩM,w(!) = 1   iff for all w‘W such that wR?w‘, ΩM,w‘() = 1;  

℧M,w(!) = 1   iff for some w‘W such that wR?w‘, ℧M,w‘() = 1; 

ΩM,w(◇) = 1  iff for some w‘W such that wR◇w‘, ΩM,w‘() = 1;  

℧M,w(◇) = 1  iff for some w‘W such that wR◇w‘, ℧M,w‘() = 1; 

ΩM,w(□) = 1   iff for all w‘W such that wR◇w‘, ΩM,w‘() = 1; 

℧M,w(□) = 1   iff for all w‘W such that wR◇w‘, ℧M,w‘() = 1. 

 

The definitions of satisfatibility and logical consequence are the same as K?‘s. About 

the peculiarities of the semantics of the logic of plausibility and certainty we first note that 

given a frame W,R◇,R and a world wW, the sets R◇(w) = {w‘|wR◇w‘} and R(w) = 

{w‘|wRw‘} represent, respectively, what we may call the epistemically possible worlds of 

w and the plausible worlds of w. Second, every plausible world is also an epistemic 

possible world (in symbols: R(w)R◇(w)); this is restriction (i) of the frame structure, 

which from a proof-theoretical point of view corresponds to axiom PC. Third, all frames 

considered are serial frames; this is restriction (ii), which in the axiomatics corresponds to 

axioms D and D. Fourth, while R◇ is a symmetric and transitive relation, R is only a 

symmetric one; this, which is stated in restrictions (iii) and (iv), corresponds, respectively, 

to axioms B and 4 and axiom B. 

3. A Logic of Inductive Implication 

Traditionally the purpose of a logic of induction is one of confirmation: given a piece of 

evidence e and a hypothesis h, it should say whether (and possibility to what extent) e 

confirms or gives evidential support to h (Carnap 1950) (Hempel 1945). About the status of 

hypothesis h when e confirms h and e is true, despite the diversity of approaches, all 

theorists agree on one basic point: given that e confirms h and that e is true, whatever we 

conclude about h it should reflect the uncertainty inherent to inductive inferences. Almost 

invariably some probability notion has been chosen to do the job: even though from ―e 
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confirms h‖ and ―e is true‖ we cannot conclude that h is true, we can conclude that it is 

probable.  

This notion of probability should not be confounded with Carnap‘s logical probability 

(Carnap 1950): while the later is supposed to be a purely logical notion connecting two 

sentences, the former must be seen as an epistemic label we attach to inductive conclusions 

in order to make explicit their defeasible character. Carnap calls this non-logical notion of 

probability pragmatical probability (Carnap 1946); we shall prefer the qualitative and 

hopefully less problematic term ―inductive plausibility‖ or simply ―plausibility‖.  

This characterization of induction in terms of pragmatical probability or plausibility is 

significant, first because considering that the truth of e warrants us to inductively conclude 

not the truth but the plausibility of h, we can trivially say that what e confirms or 

evidentially supports is not the truth of h, but its plausibility. Therefore, rather than saying 

that e confirms or inductively supports h, we should say that e confirms or inductively 

supports the plausibility of h. And given that ―h is plausible‖ will possibly be inferred, the 

whole thing might be read as ―e inductively implies the plausibility of h.‖ We shall call 

such sort of statements inductive implications.  

Second, as we have mentioned, the contradictions that are sure to arise from the use 

inductive inferences force us to consider two different but complementary approaches to 

induction. A consequence of that is that sentences like ―e confirms or evidentially supports 

h‖ shall necessarily mention the approach according to which the confirmation is being 

made. This is easily done by qualifying the plausibility notion appearing in the consequent 

of inductive implications: while ―e inductively implies the credulous plausibility of h‖ 

characterizes a credulous approach, ―e inductively implies the skeptical plausibility of h‖ 

characterizes a skeptical approach.  

Third, attaching an epistemic label to the conclusions of inductive inferences leaves the 

door open to taking the whole notion of induction as an epistemic one. In the same way that 

what is confirmed or evidentially supported is not the truth of h but its plausibility, we may 
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say that what confirms the plausibility of h is not the truth of e, but the certainty or 

plausibility of h
5
.  

As far as our formalization of these points is concerned, we shall use a version of 

Reiter‘s default logic (Reiter 1980) to represent the notion of inductive implication. The 

rationale behind this choice is that default logic incorporates the inferential and non-truth 

preserving aspects of inductive logic (Silvestre and Pequeno 2005). For example, we may 

quite naturally read default :/ as ― inductively implies  unless ‖. We shall 

represent this by ⊱⋨. Second, the monotonic basis of this default logic shall be 

exactly the logic of certainty and plausibility just introduced in the previous section. Third, 

in order to capture the epistemological nature of inductive implications just mentioned, we 

shall force the components of our defaults to be marked with the correspondent modal 

operators. For instance, an inductive inference made according to a credulous approach 

might be represented as □⊱?⋨, which shall be read as ―the certainty of  inductively 

implies the plausibility of , unless ‖. 

Let  be the language of the logic of certainty and plausibility. The inductive language 

⊱ built over  is defined as follows: (i) If  then ⊱; (ii) If ,, then 

⊱⋨⊱; (iii) Nothing else belongs to ⊱. We call ⊱⋨ and inductive implication, 

being  its antecedent,  its consequent and  its exception. ⊱ is an abbreviation of 

⊱⋨⊥, ⋨ an abbreviation for ⊤⊱⋨ and  an abbreviation for  ⊤⊱⋨⊥, where ⊥ 

is an abbreviation for pp and ⊤ is an abbreviation for pp, where p is an arbitrary 

propositional symbol. Any formula that is not an inductive implication is called an ordinary 

formula. With the help of ⊱ we can define the notion of extension: 

Let A⊱ be a set of our inductive language and S a set of formulas of our 

multimodal language. (S) is the smallest set satisfying the following conditions: (i) 

A(S); (ii) If (S)⊹⊢ then (S); (iii) If ⊱⋨A, (S), S and ~S then 

                                                           
5
 For a full description of the theory of induction sketched here see (Silvestre 2007) and (Silvestre 2010). 
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(S). A set of formulas E is an extension of A iff (E) = E, that is, iff E is a fixed point 

of the operator . 

We first note that this language ⊱ is a mixed language containing ordinary formulas 

as well as inductive implications. Therefore the set used as parameter in the definition of P-

extension plays the role of both components of a default theory: it contains both a set of 

ordinary formulas as well as a set of inductive implications. Second, in mentioning the 

deduction relation of the logic of certainty and plausibility ⊢ we make use exclusively of 

global premises, the reason for that being that we want our notion of extension to 

incorporate the autoepistemic principle according to which we are aware of whatever our 

inductive mechanism infers (see below)
6
. Finally, we make the test of consistency of the 

consequent (in terms of ~) inside the very definition of extension, turning then ⊱⋨ into 

an equivalent of default :/. This has the advantage of preventing so-called 

abnormal defaults (Morris 1988).  

As one might have concluded, this inductive language does not incorporate yet the 

epistemological considerations we have made above about inductive inferences. As we 

have advanced, one way to incorporate the theory of induction we are sketching here is to 

require the antecedent of inductive implications to be marked with the □ symbol and the 

consequent with the ? symbol. We thus have what we call the epistemic inductive language 

E⊱: (i) If  then E⊱; (ii) If ,, then □⊱?⋨E⊱; (iii) Nothing else 

belongs to E⊱. Trivially E⊱⊱.  

In order to use this E⊱ language, we have to slightly change our definition of 

extension and introduce what we shall call a -extension: Let ⊱ be a set of 

inductive implications, AE⊱ a set of formulas of the epistemic inductive language and 

S a set of formulas of our multimodal language. (S) is the smallest set satisfying 

the following conditions: (i) A(S); (ii) If (S)⊹⊢ then (S); (iii) If 

                                                           
6
 To see a formulation in terms of both global and local premises see Silvestre (2010). 
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⊱⋨A, (S), S and ~S then (S). A set of formulas E is a -extension 

of A iff (E) = E, that is, iff E is a fixed point of the operator . 

The idea here is that while A behaves like a default theory where its defaults satisfy the 

above motioned epistemic restrictions,  is a set of inductive implications meant to function 

like axioms able to nonmonotonically extend the inferential power of our logic of 

plausibility and certainty. About which inductive inferences compose  we have as follows. 

First of all, there is the serious limitation of the logic of plausibility and certainty that 

we cannot conjunct plausible formulas: from ? and ? we cannot conclude ()?. The 

reason for that is obvious: it might be that  and  contradict each other in a strong sense 

(~() or ⊥), in which case ()? also trivializes the theory (~(()?) or 

()?⊥). However, for cases where there is no contradiction between  and  it is 

desirable to be able to conclude ()? from ? and ?. In order to deal with that we 

introduce the schema of inductive implications below 

C: ⊱() 

and set all instances of C as belonging to . See that if we have  as belonging to 

(S) and  and  contradict each other (that is to say, ~(()?)S) then () shall not 

be included in (S). 

Second, axiom 4, theorem 5 and rule N embody a sort of autoepistemic principle: while 

4 and 5 says that we are aware of the facts we known as well as of the facts we do not know 

, respectively, N says that we are aware of all those propositions we take as true. But how 

about those statements whose truth we have no hint about? Suppose that Th(A) is all we 

can conclude from knowledge situation A. By N, for each Th(A) we will have that we 

know that  (□.) But how about those statements which do not belong to Th(A) It seems 

reasonable that for all  such that Th(A) we conclude □. This is what we could call a 

negative autoepistemic principle. It is trivially a nonmonotonic rule: if from A we infer 

□, from A{} the same inference cannot be done. It therefore might formalized only 

with the help of an inductive implication: 
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NA: ((□)) 

NA, all instances of which belong to , is the axiom which transform our system into a 

truly autoepistemic logic. Note that ((□)) is an abbreviation for ⊤⊱(□)⋨⊥. 

Therefore, independently of the knowledge situation at hand, if it does not contain 

~((□)) we will be able to infer nonmonotonically that □ is plausible. The purpose of 

this is of course to make explicit that our agent does not know about the truthfulness of 

those formulas whose certainty cannot be inferred from his knowledge base: in the cases 

where □ does not belong to the logical theory, that is to say,  is not known, (□) will 

be the case. One may think that because what we conclude through NA is (□) and not 

□, NA does not in fact perform the task we are claiming it performs. Not quite so. Since 

◇ (which is obtained from PP, K1 and ◇~□~), from (□) we get ◇□. 

From that, along with NP, we get □□, which is equivalent to □□. Since 

□□□, we have then that □.  

Third, some have defended what might be called the error-prone feature of inductive 

reasoning (Perlis 1987): since inductive conclusions may be mistaken even when its 

premises are true (something the very past use of such sort of inference has shown), any 

fair account of inductive reasoning should have an axiom saying that, independently of the 

circumstances we are working on, it is plausible that one of the beliefs we now take as 

rational is false. This can be formalized by the following axiom: 

 

I: 1…n⊱((1…n))⋨((1…n)),  

wherein 1,…, n and  are different basic formulas 

 

A basic formula is an atomic formula (a propositional formula) or the negation of an atomic 

formula. All instances of I? belong to . I? says that if n basic formulae are plausible, then it 

is also plausible that some of them is false (or, as we wrote, that the negation of their 

conjunction is plausible.) The exception part of I is meant to guarantee that no plausible 
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atomic formula will be out of the conjunction 1…n: if this is the case, then the 

induction implication at hand cannot be used.  

Finally, we have not spoken about skeptically plausible formulas. First, if we are 

allowed to use inductive implications only in connection to credulously plausible formulas 

(that is to say, inductive implications belonging to the epistemic inductive language E⊱), 

how are we to nonmonotonically introduce skeptically plausible formulas? Second, how are 

we to deal, in terms of inductive implications, with the relation we know there is between ?-

marked formulas and !-marked ones? 

One way to answer these questions is to use a very simple sort of confirmation by 

enumeration philosophy according to which  will be taken as accepted (!) only after it 

has got enough credulous confirmation. It is as if, by observing one black raven we turn the 

hypothesis ―all ravens are black‖ into a very weakly plausible one; by observing another 

one we increase a little bit its degree of plausibility; and so and so forth, until that, after we 

have observed a certain number of black ravens, say n, we raise the hypothesis in question 

to the status of an accepted or skeptically plausible statement. In order to formalize that, we 

need of course to quantify how much a hypothesis was weakly confirmed or, in the context 

of taking weak confirmation and credulous plausibility as the same, how weakly plausible a 

hypothesis is.  

The most straightforward way to do that is to count in how many plausible worlds a 

hypothesis is true. If  is true in at least one plausible world we write 1; if it is true in at 

least two plausible worlds we write 2 … until it is true in at least n plausible worlds, in 

the case we write n or !. This can be done by defining the following abbreviations:  

 

(i) 1 =def ;  

(ii) 2 =def (q)(q), where q is an arbitrary atomic formula of ;  

(i) n =def (p1q)…(pmq)(p1q)…(pmq), where n = 2
k+1

, 

m = 2
k
, k0, m  (p1)…(pm) and q is an arbitrary atomic formula of  

which do not occur in p1; 

(ii) n =def (p1)…(pn), where 2
k+1
n2

k
 and n+1  

(p1)…(pn)(pn+1). 
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n may be understood as meaning ―the degree of plausibility of  is n.‖ As we have 

mentioned above, such meaning is achieved by counting in how many plausible worlds  is 

true, which is performed with the help of the classical feature of worlds. Given an atomic 

formula q, we know that q and q cannot be true at the same time in world w. Therefore, if 

(q) and (q) are true, then the plausible worlds which make these two formulae 

true cannot be the same. Consequently,  is true in at least two worlds. Similarly, given an 

atomic formula p distinct from q, (qp)(qp)(qp) means that  is true 

in at least three worlds, (qp)(qp)(qp)(q) that  is true in at 

least four worlds, and so on and so forth. With the help of this abbreviation we can 

nonmonotonically obtain skeptically plausible formulas thought credulously plausible ones 

according to the confirmation by enumeration philosophy mentioned above: 

!n: n⊱!⋨() 

All instances of !n, for some specific n, belong to . Note that, according to !n, even if n 

is true (that is,  is true in at least n plausible worlds) two situations might prevent  ! from 

being inferred: if ! implies a contradiction or if ()? is the case. This second situation is 

significant, for it illustrates how the exception part can be used to set priority between 

inductive implications. For instance, imagine that we somehow have got n but there is 

belonging to A the inductive implication ⊱(). Suppose further that we have got . In 

this case, because of the exception part of  !n, ! shall not be inferred: ⊱() has priority 

over n⊱!⋨(). 

4. Conclusion 

We have in this paper elaborated on how one might extend paranormal modal logic in such 

a way as to use the notions of plausibility along with an inductive reasoning mechanism 

which takes seriously into consideration the epistemic nature of inductive reasoning. More 

specifically, we introduced a non-classical multimodal logic of plausibility and certainty in 
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which, on the one hand, the operators of plausibility ? and ! behave paraconsistently and 

paracompletly, respectively, and on the other hand the operators of certainty and epistemic 

possibility behave classically. Along with a version of Reiter‘s default logic, we were able 

to use this logic of plausibility and certainty to formalize a very simple theory of induction. 

It should be noted that this formalization is just one among the several possibilities we can 

to use the logic of plausibility and certainty along with a nonmonotonic reasoning 

mechanism to formalize a theory of induction. For an illustration of some of these 

possibilities along with the formalization of less naïve theories of induction see (Silvestre 

2010). 
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