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CARNAP’S PROBLEM:  

WHAT IS IT LIKE TO BE A NORMAL INTERPRETATION OF CLASSICAL 

LOGIC?
*
 

 

Arnold Koslow  

 

 

Abstract 

Carnap in the 1930s discovered that there were non-normal interpretations of classical logic - ones 

for which negation and conjunction are not truth-functional so that a statement and its negation 

could have the same truth value, and a disjunction of two false sentences could be true.  Church ar-

gued that this did not call for a revision of classical logic.  More recent writers seem to disa-

gree.  We provide a definition of "non-normal interpretation" and argue that Church was right, and 

in fact, the existence of non-normal interpretations tells us something important about the condi-

tions of extensionality of the classical logical operators. 

 

 

1. Carnap’s Problem  

In the decade from the early thirties to the mid fifties, there was a brief and scattered dis-

cussion of a problem raised by B.A. Bernstein (1932), R.Carnap (1943), and A. Church 

(1944, 1956) of what has now been referred to referred to as ―Carnap‘s Problem‖. Carnap 

discovered the existence of what Church later called ―non-normal interpretations‖ of sen-

tential classical logic, and first –order logic. Church‘s major criticism of Carnap‘s reformu-

lation of sentential logic was that it essentially incorporated semantical assumptions into 

what was supposed to be a syntactically presented formulation of the logic.  

In what follows, I shall consider only sentential logics. Roughly speaking Carnap 

took interpretations to be truth-value assignments (He called them ―interpretations.‖) which 

assigned truth to all theorems, and which respected deducibility—that is, if some collection 

of sentences is true under an interpretation , then any sentence deducible from those sen-

tences is also true under . What Carnap discovered was that there were interpretations of 

the classical sentential calculus which assigned the same truth value to statements as well as 

                                                 
*A paper read to the Logic Seminar, Cambridge University April 23, 2009.  Many thanks to Peter Smith, Lu-
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their negations, and interpretations which assigned ―true‖ to a disjunction while also assign-

ing ―false‖ to all of its disjuncts.   

Church thought was that there was no need to correct the formulation of the logic.  

There was no ―deficiency‖ in the formalization, and no need to seek a ―fuller formaliza-

tion‖. Presumably if one just avoided the use of these non-normal interpretations, there 

would not be any mismatch between the proof-theoretic (syntactic) deductive presentation 

of the system, and the usual (semantic) truth-tables for the logical connectives.  

In the more recent literature devoted to Carnap‘s discovery, the issue takes on a 

more serious cast. If one thought that the truth-tables provided the meaning of the logical 

connectives (I do not), then if the proof-theoretic formulation does not match up with the 

tables then one might put the significance of Carnap‘s discovery as showing that the (de-

ductive) rules of inference do not determine the meanings of logical constants (Raatikainen 

(2008)). Other writers (Murzi & Hjortland  (2010)) have taken the moral to be one that 

concerns inferentialism, and a problem concerning a special kind of categoricity. Shoesmith 

and Smiley (1978) have explored specific examples of non-normal interpretations from the 

vantage of multiple -conclusion logics, using essentially a four-element Boolean algebra, 

and Smiley (1996), Incurvati & Smith (2009) have considered embedding the sentential 

calculus in a system with rules of rejection and acceptance (a ―fuller fomalization‖?) to 

eliminate the mismatch. Rumfitt (1997 & 2000) and a host of other logicians have made 

their own case for understanding the import of these strange truth-value assignments.   

In addition to all of these, I now wish to reconsider ―Carnap‘s challenge‖ and its 

import from a more general ―structuralist‖ vantage. This kind of approach has been ex-

plained at length in Koslow (1992), and somewhat differently but in lesser length in 

Koslow (1999). The following discussion however is intended to be self contained.  

 

2. The more general structuralist background  

To indicate the generality of "Carnap's Problem" we shall use the notion of an implication 

structure  = <S,  >, where S is any non-empty set, and ―‖ is an implication relation. 

That is, any relation on S satisfying the following six slightly redundant conditions: 
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 (1)  Refexivity: A  A, for all A in S. 

 (2)  Projection: A1,A2,...,An  Ak, for any k= 1,...,n.   

 (3)  Simplification (sometimes called Contraction): If A1,A1,A2,...,An  B,  

       then A1,A2,...,An  B, for all Ai and B in S. 

(4)  Permutation: If A1,A2,...,An  B, then Af(1),Af(2),...,Af(n)  B, for any 

      permutation f of {1,2,...,n}. 

 (5)  Dilution:  If A1,A2,...,An  B, then A1,A2,...,An,C  B, for all Ai,B, and C  

        in S. 

(6) Cut: IfA1,A2,...,An  B, and B, B1,B2,...,Bm  C, then 

       A1,A2,...,An,B1,B2,...,Bm  C. 

 

These conditions are of course those which G.Gentzen put forward as the structural condi-

tions for implication. We understand them in a very general sense as giving a story about 

implication that does not appeal to truth or any other familiar semantical concept. And it is 

conspicuous that the story is told without any appeal to the logical operators. They (that is, 

the operators of conjunction, disjunction, the conditional, negation, and universal and exis-

tential quantification), as it turns out can all be defined in terms of implication. It is also a 

feature of the structuralist story that the set S is not restricted to syntactically presented el-

ements. In that lies the generality of this way of looking at things. Nevertheless it is a gen-

erality that will not be used in the following.    

Here are a few definitions that we shall need in order to show how, despite the ab-

sence of apparently semantical concepts in this story, we can in fact define the concept of 

truth-value assignments (valuations), and obtain with them, a remarkable completeness the-

orem for the theory of implications given by (1) – (6). This will allow us to introduce the 

semantic notion of a valuation in the structuralist setting. 

(i)  A  bisection on S is any ordered pair T = <K, L> where K and L are non-empty 

subsets of S that are disjoint , and whose union is S. 

(ii)  Let T = <K, L>  be a bisection on S.  Then 
T
 is the corresponding bisection 

implication relation defined as follows:  
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A1,A2,...,An 
T
  B if and only if some Ai  is in K or B is in L.   

 

(iii) Let  = <S,  > be an implication structure, then any subset R of S is strongly 

closed under the implication relation if and only if whenever several members of R together 

imply A then A also belongs to R. We shall say that any bisection T = <K, L>  on an impli-

cation structure is a strong bisection on   if and only if L is strongly closed under the im-

plication relation  of the structure.   

 

3. Truth-value assignments (valuations)  

We can now show several interesting facts about strong bisections, on the basis of which 

we can define the notion of a truth-value interpretation on arbitrary implication structures.   

 (iv) Let  = <S,  > be an implication structure. Then for any strong bisection im-

plication relation 
T
  on ,   we have      

T
 . That is, for any structure, every strong 

bisection implication 
T
 on it extends . 

 

 (v)  The strong bisection implications are maximal.  That is, if 
T
 and 

T*
 are 

strong bisection implication relations on , and  
T 

   
T* 

,  then 
T 

 =  
T* 

. 

 

We now come to the basic result that allows the introduction of truth-value interpretations 

on implication structures:   

 

(vi) Lindenbaum-Scott Completeness I (Scott, 1974).  Let    be any non-trivial 

implication structure (there are at least two elements of it neither of which implies 

the other).  Then A1,A2,...,An  B if and only if A1,A2,...,An 
T
 B, for all strong bi-

section relation 
T
  on the structure.  

  

Another way of stating this result is that if we define an implication structure as complete if 

and only every member of it is either a thesis (it is implied by everything in the structure, or 
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it is an antithesis, it implies everything in the structure, then the Lindenbaum-Scott Theo-

rem says that every non-trivial implication relation is the intersection of all complete impli-

cation relations that extend it. 

 

Simple proof: For any (non-trivial) implication structure  = <S,  >, clearly every 

bisection implication relation 
T
 extends the implication relation , because L is 

strongly closed under the implication relation .  The converse is fairly straight-

forward:  Suppose that A1,A2,...,An 
T
 B for all bisection implication relations 

T
 , 

but A1,A2,...,An  B fails.  We define a strong bisection T* = <K, L> as follows: 

Let L be the set of all members C of S such that A1,A2,...,An  C.  L is strongly 

closed and is also   non-empty since it contains all the Ai.  Let K be the rest of S, 

that is, all C such that A1,A2,...,An  C  fails.  It is non-empty since B is in it.  So T 

is a strong bisection on the structure.  Therefore, by hypothesis, A1,A2,...,An 
T* 

B.  

Therefore some Ai  is in K or B is in L.  But none of the Ai are in K so B is in L.  

But that is impossible.  Consequently, A1,A2,...,An  B. 

 

We can now define the notion of a truth-value assignment for arbitrary (non-trivial) impli-

cation structures. Simply stated, truth-value assignments (valuations) on implication struc-

tures are uniquely associated with strong bisections on those structures. That is 

If   = <S,  > is an implication structure, then any truth-value assignment on it is 

a function   associated with a strong bisection T = <K, L> on it such that for any A in S,  

(A) = t,   if A is in L, and 

 (A) = f,   if A is in K. 

With this notion of a valuation in place, the Lindenbaum-Scott theorem can be stated in a 

way that is truly a completeness result: 

 

Lindenbaum-Scott Completeness II. Let   be any non-trivial implication struc-

ture.  Then A1,A2,...,An  B if and only if  for all strong bisection relations  on the 

structure, if ( Ai) = t  for all Ai , then ( Bi) = t.  That is the implication relation on 

the structure holds if and only if every valuation that makes each of the premises 

true, also makes the conclusion true. 
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A few observations are in order. In some of the recent literature on Carnap's Problem, much 

has rested on the truism that if the premises imply a conclusion, then if the premises are 

true under a valuation, then the conclusion has got to be true as well. Some distinguished 

logicians like J. Myhill, and J. Corcoran have had their doubts whether this is even correct, 

but the simple proof shows that something like it is correct. However, a glance at the simple 

proof of completeness shows it to be a result which holds without assuming how the valua-

tions behave with respect to the logical operators. Thus on the present story, it is not at all 

plausible, that without some additional assumptions such matters as how valuations distrib-

ute over conjunctions, disjunctions, negations and conditionals will be settled, or indeed 

whether they can be settled in any but special cases.   

Nevertheless, it is this theorem that motivates our taking these valuations as truth-

value assignments. It is what one sees in the usual classical case, only instead of the usual 

truth values, we take truth (falsity) of an interpretation to be just membership in the sets L 

and K of the associated strong bisection (this is an insight which is due to  D. Scott (1974).   

It is worth recalling that this notion of a truth-value assignment relies only on the 

notion of an implication relation as we described it using Gentzen Structural conditions. 

Those conditions for implication made no appeal to any notion of truth, or truth-value as-

signments. So the definition of these valuations does not rely on some hidden semantic de-

vices.  

Nevertheless, there is a fair amount of semantic information that can be gleaned. It 

can be shown that  

 

For any conjunction [A B is in L if and only if A is in L and B is in L].  

For negation, [If A in in L then A is in K] (but not conversely. 

For disjunctions, [If A is in L or B is in L, then (A  B) is in L] (but not converse-

ly), and  

For conditionals [If (A  B) is in L, then either A is in K or B is in L] (but not con-

versely).   
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So if we want more, we need to require more than just truth-preservation under all valua-

tions. 

 

4. Carnap's Problem, non-normal truth-value interpretations, and the logical opera-

tors  

With the Lindenbaum-Scott theorem in place we are in a position to reconsider Carnap's 

Problem. It involves the observation that there are certain truth-value valuations which sat-

isfy the condition that any sentence that is implied by sentences that are all assigned the 

value "true", will also be assigned the value "true", which, nevertheless, lead to unwanted 

consequences for the logical operators. It will turn out that there are assignments that will 

assign the value "f" both to a sentence and it's negation, and some that will also assign "t" 

to a disjunction of sentences each of which has been assigned "f". There's something pecu-

liar about the examples of non-normal valuations that Carnap, and Church provided. But 

we shall see with the help of other examples that there are such non-normal valuations on 

implication structures even when the notion of a truth-value assignment is given the clear 

foundation provided by the Lindenbaum-Scott theorem. The "Carnap" phenomenon is real.   

It is instructive to note that there are cases of implication structures with implication 

relations that do not give rise to a Carnap Problem; all truth-value assignments for the logi-

cal operators behave in the expected way. Let S be the sentences of the classical sentential 

calculus, and let the implication relation be given by the bisection implication relation 
T
 , 

where T is a strong bisection <K, L> (that is, L is closed under the implication relation 


T
). It is easy to see that the following holds: 

 

 (1)  (A   B) is in L (t)  if and only if  A is in L (t) and B is in L (t). 

 (2)   A is in L (t) if and only if A is in K (f). 

 (3)  (A  B) is in L (t) if and only if A is in L (t) or B is in L (t). 

 (4)  (A  B) is in L (t) if and only if A is in K (f) or B is in L (t). 

 



A. Koslow    124 

 

That is, all the operators behave in the familiar extensional pattern for this particular truth-

value assignment. Later, we shall see that this is exactly what extensionality with respect to 

a valuation requires. There is no "Carnap Problem" here. This is however, a case of a spe-

cial implication relation on the sentences of classical sentential logic. The proof theory and 

this semantics are perfectly matched. Things don't always go this smoothly.   

Consider the following structure: CSC, where S is the set of sentences of the Classi-

cal Sentential Calculus (CSC), and the implication relation  is one given by say the 

standard deductive rules for (CSC). One would have thought that for such a familiar classi-

cal system, it would be obvious that the logical operators would all exhibit the same exten-

sional pattern for every truth-value assignment. That is not so. We know that this structure 

has theses (those members of S which are implied by everything in the structure), that it has 

antitheses (those members of S which imply every member of the structure), and it is also 

incomplete in the sense that there are sentences in S such that neither they nor their nega-

tions are theses (this is sometimes call syntactic incompleteness, and sometimes incom-

pleteness with respect to negation). Consider the following valuation:  Let T = <K, L>, 

where L is the set of all theses, and K is the rest of S: 

 

 (A)  = t, if A is a thesis (A is in L), and  

  (A)  = f, if A is not a thesis (A is in K).     

 

Let A0 be a member of S such that neither it nor its negation is a thesis.  Since the structure 

is classical, it follows that  

 

 ( A0   A0)  = t, and since neither A0  nor  A0  are theses,  

 (A0) = ( A0) = f. 

 

Evidently under this assignment, a disjunction is assigned "t" although its disjuncts are both 

assigned "f". Furthermore there is a statement, A0, such that it and its negation get assigned 

the same value. This is of course not your standard extensional distribution of truth-values. 
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 We mentioned in passing that Carnap offered the example of a non-normal valua-

tion that consisted in the assignment of "truth" to all sentences in a structure. In that case 

we get the bizarre distribution according to which every sentence and its negation are as-

signed the same value. Both these assignments satisfy the requirement that for any implica-

tion, if all the premises are "true" then so too is the conclusion. That looks like a "cheap 

shot". Nevertheless the response to such an example cannot be that we exclude such distri-

butions, since that looks arbitrary. We have provided a less contentious example which 

supports Carnap's essential point.   

In any case we cannot make use of Carnap's version since all the valuations provid-

ed by the Lindenbaum-Scott Completeness Theorem are based on (strong) bisections. If all 

sentences were assigned "t", then they would all belong to the set L, so that the set K would 

be empty. And that is impossible.   

 There are more exotic examples of which I shall consider just one. D. J. Shoesmith 

and T.J. Smiley give an example (Multiple-Conclusion Logic, p.3) in which there are four 

truth-values. It is possible to see their example as a case where the implication structure is 

given by a set S of four elements {p, q, r, s} where p implies q and implies r, q implies s, r 

implies s, and neither r nor s imply each other. In this case consider L to be the set {s}, and 

K to be the set {p,q,r}. Membership in L is "t", membership in K is "f". The structure looks 

like this:  

     p  
                                                        ↙  ↘ 

           q       r 
             ↘ ↙  

                                                           s                                
 
In this four-membered Boolean algebra, s is the negation of p (and conversely), q is the ne-

gation of r (and conversely), the disjunction of q and r is s, so that the disjunction of two 

elements (q and r)  that are "f", is "t", and q and its negation r are both ―f‖. Negation is clas-

sical. Church, in his review of Carnap‘s Formalization of Logic, had already indicated that 

non-normal truth-value assignments could be based on a four-element Boolean algebra.  
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 This example involves cases where there are various different kinds of falsity {p, q, 

r, }, and in such cases, one might be inclined to dismiss the example as a case of a generali-

zation to multiple truth-values, and one might have expected with such a generalization, 

that distribution patterns of truth and falsity would lead to these peculiar results. That reac-

tion however is not warranted.  In order to see whether these non-normal interpretations are 

a serious problem requiring serious modification in the presentation of some of our stand-

ard logics, we have to have to have a better working definition of normal and non-normal 

assignments. That is the next task. 

 

5. The Normal, and the Non-Normal  

We can distinguish the normal truth-value valuations from those which are non-normal in a 

very simple systematic way, rather than appeal to a non-homogeneous collection of various 

clever, but strange constructions. Recall that a valuation on a structure   = <S,  > is a 

function which for any strong bisection <K, L> assigns "t" or "f" to a member of S accord-

ing as it belongs to L or to K. And the bisection is strong just in case L is strongly closed 

under the implication relation . Recall as well, that by the Lindenbaum-Scott theorem, it 

is guaranteed that an implication relation holds between premises and a conclusion if and 

only if whenever any valuation is true for all of the premises, then it is also true for the con-

clusion.                                                             

 Among all the valuations we shall single out those which are normal, for which we 

shall need the notion of the dual of an implication relation. It was R. Wojcicki (1973) who 

first defined the important notion of the dual of an implication relation ("Dual Counterparts 

of Consequence Relations", in Bulletin of the Section of Logic, v.2, n.1, 1973, pp. 54-57, 

and they have been studied at some length in Koslow (1992). Although Wojcicki seems not 

to have made any use of his discovery in his later writings, it is a seminal notion. Implica-

tion relations which are duals of other implication relations play a powerful role in defining 

a general notion of the duality of logical operators, and provide some insight into multiple 

conclusion logic as well. They also show that there are implication relations and conse-

quence relations which are falsity-preserving rather than truth-preserving. [See also 

Koslow, A Structuralist Theory of Logic (1992).]  
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  The dual of any implication relation is also an implication relation satisfying our (6) 

conditions, and it can be shown to satisfy two conditions: (1) A dually implies B (A ^ B) 

if and only if B implies A (B  A), and although the dual is defined in all structures, in 

those structures where disjunctions exist, it reduces to this: (2) A finite number of premises 

dually implies B if and only if B implies their disjunction.   

 We now can introduce the notion of a normal bisection, which is a strong bisection 

with an additional condition:  Let T = <K, L> be a bisection of an implication structure  = 

<S,  >.  Then T is a normal bisection on  if and only if: 

 

(1) L is strongly closed under the implication relation  of the structure, and  

(2) K is strongly closed under ^, the dual of the implication relation on the struc-

ture. 

 

In the usual way, a normal valuation on the structure is one which for any normal bisection 

assigns "t" to the members of L, and "f" to those of K. 

  

A non-normal valuation on a structure with implication relation  is a valuation 

based on a strong bisection <L, K> for which (1) L is strongly closed under the im-

plication relation, but (2) K is not strongly closed under the dual of that implication 

relation. 

 

 The restriction of valuations to normal ones introduces a nice symmetry in their 

construction: L is strongly closed under implication, and K is strongly closed under the dual 

implication. But there is more than just a symmetry that is reflected here. Normalcy re-

quires that the concepts of true under a valuation and false under a valuation be duals of 

each other.  

What we have in mind is the following: In the case of the logical operators on im-

plication structures, the duals of operators can be obtained by taking their definitions which 

are framed in terms of implication, and simply replace the implication relation everywhere 

in that definition by it's dual. Thus for example, if in the characterization of conjunction we 

replace the implication relation by its dual, the result is the characterization of disjunction.  
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Similarly, we suggest, consider the characterizations we gave for truth (and falsity) in a 

normal valuation: 

 

(1) For the normal bisection T = <K, L>,  A is "t" if and only if (L is strongly closed 

under ) and (A is in L).     

 

And the dual would be given by 

  

(2) For the normal bisection T = <K, L>,  A is "f" if and only if (K is strongly 

closed under ^) and (A is in K). 

 

In other words, the assignment of falsity to the members of K is what the assignment of 

truth to the members of L becomes if we replace implication of the structure with its dual. 

Another way of seeing the connection with duality is to consider the simpler case: Let T = 

<K, L> be a strong bisection on a structure.  The Ls are the truths, and the Ks are the false-

hoods (for this bisection of course). For any member of L, anything which it implies (using 

 ) is true, and so in L.  Now the Ks are false, and anything which implies them (using  ) 

is false, and so in K. However, any A which implies (using ) some B in K is such that B 

dually implies A (B ^ A). So K is closed under the dual implication. In effect, the same 

thing is going on, only in the one case it is by implication, and in the other it is by its dual. 

Thus we see that the motivation to consider the normal valuations as the ones to 

use, is not to preserve some core logical truths like disjunctions being true if and only if at 

least one disjunct is true. There is the other possibility that the restriction to normal valua-

tions respects a feature of truth and falsity: that they are dual concepts.    

In certain recently studied logical systems, that duality has not been preserved. That 

doesn't mean that logic has been left in dire straits, and needs to be rescued. It only means 

that there are other paths that logicians can study and even advocate.  

We can now see with this notion of normality in place, that if there are non-normal 

valuations on an implication structure, then there are going to be deviations from the usual 

distributional patterns for some of the logical operators.   
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Here is why we say "if": There are some implication structures on which all the val-

uations are normal, and there are some implication structures on which some valuations are 

normal and some are not. Here are some examples of these possibilities: 

 

 (1) If  = <S, 
T
 >, where the implication relation on S is a bisection implication 

relation on S, then it is easily shown that in that case where T = <K, L> is a bisection, then 

the valuation on it has to be normal. All the operators as a consequence have the familiar 

extensional distribution features.  This was the example we already discussed on pp.123-4.  

 (2) Suppose that there is a non-normal valuation on an implication structure  = <S, 

 > in which disjunctions exist. Then there will be a disjunction such that the non-normal 

valuation will assign ―f‖ to each of the disjuncts, but assign ―t‖ to the disjunction. The 

proof is straightforward 

 

There is a strong bisection <K, L> in which L is closed under implication, but K is 

not closed under the dual implication.  Then there will be some  A1,A2,...,An and B 

in S,  such A1,A2,...,An  ^ B, all the  Ai   are in K, but B is not.  Then B  (A1  

A2 ... An ).  B is in L, so (A1  A2 ... An ) is also in L.  Consequently we have a 

disjunction of members all assigned "f" by the non-normal valuation, but their dis-

junction is assigned "t".  This shows that given our notion of a non-normal valua-

tion, then in a very broad variety of cases, there will be Carnapian style examples of 

a non-standard distribution of truth-values. 

 

(3) Here is a specific example of a non-normal valuation. Consider the classical implication 

structure (CSC) that we referred to earlier. Let <K, L> be a bisection where L is the set of 

all theses of (CSC), and K is the set of the remaining sentences of S (all the non-theses).  

(CSC) is incomplete (with respect to negation), so there is some sentence A0 such that nei-

ther it nor its negation are theses of the structure. This is a non-normal bisection on the 

classical sentential calculus: L is certainly closed under the usual classical implication rela-

tion (say) , but K is not closed under its dual. The reason is that A0, A0  ^ (A0  A0)  

(because (A0  A0)   (A0  A0)). So we have A0 is in K, and  A0 is in K, but (A0  

A0) is in L. Thus with this non-normal valuation we have two statements each assigned 
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"f", whose disjunction is assigned "t", and a statement (i.e. A0 ) such that it and its negation 

are both assigned "f".   

 Thus in classical implication structures, the distributional patterns of non-normal 

valuations for some of the logical operators deviate from the usual (extensional) patterns. 

This we have just seen is true for negation, and disjunction.   

 Before we turn to a way of getting some perspective on these observations, and try 

to understand the significance of the difference that non-normal valuations make, it is im-

portant to note that in the classical case, if we consider only the behavior of the normal val-

uations, then there is no departure from the familiar patterns. For this we need a brief dis-

cussion of the extensionality of the logical operators. 

 

6. Extensionality and the Logical Operators  

For any implication structure  = <S,  > , we think of the logical operators as functions 

that map members of S, or pairs of members of S to S.  The full story of how to define the 

logical operators using only the implication relation of the structure is a story told else-

where in Koslow (1992). Suppose that one has an operator O(A) on the structure.  Let T = 

<K, L>  be any strong bisection on the structure. And let  be the valuation based on that 

structure. We shall say that O(A) is extensional with respect to the valuation  (for short, 

"O[ext, ]"), if an only if , 

 

For any A and A* in S, if (A) and (A*) are in the same set of the bisection (K, or 

L), then (O(A)) and (O(A*)) are in the same set of the bisection (K, or L). 

 

That is, if A and A* have the same truth value, then O(A) and O(A*) also have the same 

truth-value. This definition covers the case of operators on single arguments.  There is the 

obvious natural generalization for operators of two or more arguments.  

 It can be shown that for any valuation , normal or not, and any A and B, (where 

"N", "D", "C", and "H", stand for the negation, disjunction, conjunction and conditional 

operators on a structure) that 
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     (1) N[ext, ] if and only if:  A is in K if and only if A is in L. 

     (2) D[ext, ] if and only if:(A  B) is in L if and only if A is in L or B is in L. 

     (3) C[ext, ] if and only if: (A  B) is in L if and only if A is in L and B is in L. 

     (4) H[ext, ] if and only if: A is in K or B is in L. 

 

So (1) says that the negation operator (‗‖) is extensional with respect to the valuation , if 

and only if [the negation of any A is assigned f if and only if A is assigned t]. Similar read-

ings for (2) – (4).  

Therefore if a valuation departs from the customary distribution of truth-values for a 

logical operator, then that operator will fail to be extensional with respect to that valuation.   

 It is not difficult to show, for any implication structure, how the extensionality of 

the various logical operators with respect to any valuation (normal or not), are related. The 

result can be summed up this way: 

 

N[ext, ]   
       ∣           ↔  

       ↓               ↘  

  D[ext, ] ←  H[ext, ]. 

 
So for example one can show that there is some valuation such that disjunction is exten-

sional with respect to it, but negation is not. 

 The connection of the normality of a valuation and the extensionality of the various 

logical operators with respect to it is a matter of some delicacy. If we assume that the nega-

tion operator on an implication structure is classical, then it can be shown that all the logi-

cal operators on that structure are extensional with respect to any normal valuation—if any 

one of them is. That is: 

 

  N[ext, ]   
       ↑           ↔  

       ↓               ↘  

    D[ext, ] ←→   H[ext, ].  
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Since it is straightforward to show that for any valuation , disjunction is extensional with 

respect to it, if and only if it is normal, it follows that in any classical implication structure, 

all the logical operators are extensional with respect to any normal valuation, since disjunc-

tion is extensional with respect to any normal valuation.   

 The matter is different if the implication structure is non-classical. Let ISC be the 

structure that is associated with the Intuitionistic Sentential Calculus. It is easy to prove the 

following simple theorem: 

 

If   is any implication structure such that (1) negation is non-classical,   

(2) it has the disjunctive property [(A  B) is a thesis if and only if either A is a the-

sis or B is a thesis], and (3)  is incomplete with respect to negation (some member 

of the structure is neither a thesis nor is its negation), then there exists a normal val-

uation on the structure such that negation is not extensional with respect to it. 

 

This shows immediately that for the Intuitionistic implication structure, negation is not ex-

tensional with respect to some normal valuation, and by the first triangle diagram, the con-

ditional is not extensional either. So the restriction to normal valuations, unlike the case of 

classical structures, doesn't help restore extensionality. The negation and conditional opera-

tors in the Intuitionistic structure are not -extensional even with respect to normal valua-

tions. 

 

The proof is direct.  Let T = <K, L>, where L is the set of Intuitionistic theses (all A 

such that it is provable in ISC that A).  Clearly, L is closed under Intuitionistic im-

plication 
ISC 

.  To see that it is a normal bisection, consider A, B, C such that A, B 

(
ISC 

)^ C , where A and B are in K.  We want to show that C is  in K. Suppose it is 

in L, then since C 
ISC  

(A v B) it follows that (A v B) is in L.  Therefore by the dis-

junctive property, either A is in L or B is in L.  But by hypothesis, neither of them is 

in L.  Therefore C has to be in K.  So T is a normal bisection.  However, since ISC 

is incomplete with respect to negation, there is some Z such that neither it nor it's 

negation are theses.  So neither it nor its negation are in L – both are in K.  There-

fore the valuation based on T assigns "f" to both Z and to its negation. 

 

This is a nice way of incorporating what some philosophers think should be the Intuition-

istic version of "truth" simpliciter. Here we take the appeal to the theses of Intuitionism to 
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be one way of giving a truth-value interpretation—that is, a particular valuation.  We have 

seen that taking the set of Intuitionistic theses as the L's of a strong bisection gives a nice 

example of a normal bisection. We do not confuse a particular truth-value assignment with 

"truth" (say some notion satisfying the Tarski T-Schema), no more than we would make the 

mistake of confusing a valuation in a two-valued sentential logic or a truth-value assign-

ments for a possible world, with "truth".   

 So we see that a normal valuation on an Intuitionistic structure can give rise to devi-

ations from the usual extensional distribution—in this case negation (and by the first trian-

gle extensionality diagram the conditional will also fail to be extensional with respect to 

this normal valuation). The disjunction and conjunction operators, however, will be exten-

sional with respect to this normal valuation. 

 It is also worthwhile mentioning the well known fact that just as there are non-

normal valuations on classical structures, there are also non-normal valuations on non-

classical structures. And just as in the classical case, they give rise to strange behavior for 

some logical operators. To see this, let  ISC = <S,  
ISC

> be an Intuitionistic implication 

structure.  Let T = <K, L> be a bisection where L is the set of classical theses (sic), and let 

K be the rest (S – L).  L is closed under  
ISC

 , because if A is a classical thesis and A 
ISC

  

B, then B is also a classical thesis. So T is at least a strong bisection. The question is 

whether it is normal. Is K closed under the dual of the Intuitionistic implication relation 


ISC 

? The answer is negative.   

 

A proof: Since (CSC) is incomplete with respect to negation, there is some A0 such 

that neither it nor its negation is a thesis of (CSC). Consequently neither of them is a 

thesis of ISC.  Now since neither of them is a classical thesis, they are both in K. 

Now we have A0 , A0 
ISC 

^(A0  A0), because that is equivalent to the condi-

tion that (A0  A0) 
ISC

 (A0  A0) . Therefore, if K is closed under the dual of 


ISC

, then  (A0  A0)  is in K. That is impossible since K contains only sentences 

which are not classical theses. Consequently, K is not closed under the dual, and 

this bisection is non-normal. 

 

Therefore the valuation that is based on this strong bisection is non-normal. Since (A) is 

"t" if A is in L and "f" otherwise, we have the result that (A0) and (A0) are both 'f". It is 
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also clear from this proof, that disjunction and the conditional are also non-extensional with 

respect to this valuation. In any case, the restriction to only normal valuations may restore 

extensionality in the classical case, but it certainly doesn't achieve that in the Intuitionistic 

case, nor should it, since it is very clear that the negation and the conditional operators in 

the Intuitionistic case are easily seen to be non-extensional.   

 I agree with Church's reaction to the existence of non-normal valuations. He thought 

that Carnap had discovered that you could have valuations that assigned "t" to (say) the tau-

tologies of the classical sentential calculus, but deviated elsewhere from the normal as-

signments on the logical operators. Van Fraassen's supervaluations are another very differ-

ent way of showing that possibility.   

 In this note I have tried to indicate that the non-normal valuations have more inter-

est than that. Their existence doesn't show that there is something wrong with the usual 

presentations of some simple sentential logical systems, nor does it show that the claim that 

implication is truth preserving is inadequate since it by itself doesn't guarantee the familiar 

extensional distribution of valuations on the logical operators. Nor does it guarantee that 

truth and falsity are duals. The motivation for removing non-normal valuations from the 

logical scene is cosmetic. There's no need to treat them like the lepers of logic. 
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